

FACULTY OF ELECTRICAL \& ELECTRONICS ENGINEERING TEST 2

COURSE	$:$	INTELLIGENT CONTROL
COURSE CODE	$:$	BEE4333
LECTURER	$:$	HASZURAIDAH ISHAK
DATE	$:$	29 MAY 2014
DURATION	$:$	2 HOURS
SESSION/SEMESTER	$:$	SESSION 2012/2013 SEMESTER II
PROGRAM	$:$	BEE

NAME: \qquad
STUDENT ID: \qquad
NRIC: \qquad

INSTRUCTIONS TO CANDIDATES

1. This question paper consists of TWO (2) questions. Answer ALL questions.
2. All the calculations and assumptions must be clearly stated.
3. Write your answers in the exam booklet provided.

This examination paper consists of SIX (6) printed pages including front page

QUESTION 1

(a) Describe THREE (3) differences between fuzzy logic and neural network.
[6 Marks]
(b) Consider the following 3×3 LED system. This system is trained to recognize THREE (3) different characters, \mathbf{H}, \mathbf{I} and \mathbf{T}. The illustration of the system and the pattern for recognizing the characters is shown in Figure 1.

Design a multilayer neural network with ONE (1) neuron in ONE (1) hidden layer for training purpose of the system. Say that the initial value of all weights used in the system is $\mathbf{0 . 1}$. The desired output that is related to the output pattern \mathbf{H}, \mathbf{I} and \mathbf{T} are $0.1,1$ and 10 , respectively.

1	2	3
4	5	6
7	8	9

3x3 LED System

" H " Pattern

"I" Pattern

" T " Pattern

Figure 1. 3x3 LED System and Pattern of "H", "I" and "T"
(i) Illustrate the neural network.
(ii) Calculate the actual output for the given weights and pattern of character \mathbf{H} if we apply a sigmoid function as the hard limiter of the system.

Note : sigmoid function $\rightarrow f(x)=\frac{1}{1+e^{-x}}$
(iii) Given $t_{k}=0$. From the value of (i), calculate the following values at the first iteration by using Back Propagation algorithm.

- Δw_{11} and w_{11} (new) between output and hidden layer
- $\Delta w_{11}, \Delta w_{12}, \Delta w_{13}$, and $w_{11}(n e w), w_{12}$ (new), w_{13} (new) between hidden layer and input layer.
- Illustrate the new Neural Network.

The information for the Neural Networks configurations is as follows.

- The input is symbolized as x_{i}
- The output of hidden layer is symbolized as y_{j}
- The output of hidden layer is symbolized as y_{k}
- The learning rate is $\alpha=0.1$.
- Error gradient in output layer : $\Delta w_{j k}(p)=\alpha \times y_{j}(p) \times \delta_{k}(p)$

$$
\begin{aligned}
& -\delta_{k}(p)=y_{k}(p) \times\left[1-y_{k}\right] \times e_{k}(p) \quad \text { where } \quad y_{k}=\frac{1}{1+\exp \left(-x_{k}(p)\right)} \\
& \qquad e_{k}(p)=y_{d, k}(p)-y_{k}(p) \\
& \text { Update } w_{j k}(p+1)=w_{j k}(p)+\Delta w_{j k}(p)
\end{aligned}
$$

- Error gradient in hidden layer $\Delta w_{i j}(p)=\alpha \times x_{i}(p) \times \delta_{j}(p)$
$-\delta_{j}(p)=y_{j}(p) \times\left[1-y_{j}\right] \times \sum_{k=1}^{l} \delta_{k}(p) \times w_{j k}(p)$
Update $w_{i j}(p+1)=w_{i j}(p)+\Delta w_{i j}(p)$

QUESTION 2

(a) The application of an Artificial Neural Network (ANN) involves two phases, which are Learning phase and Recall phase. In the Learning phase (usually offline) the ANN is trained until it has learned its tasks (through the adaptation of its weights). Explain about the types of learning phase in ANN and give TWO (2) the characteristic of each type.
[6 Marks]
(b) Figure 3 illustrates a multilayer Neural Network that has the input patterns of (0 1 1).
(i) Calculate the output value of L_{k}.
(ii) Given $t_{k}=0$. From the value of L_{k}, calculate the following values at the first iteration by using Back Propagation algorithm.

- $\quad \Delta w_{11}$ and w_{11} (new) between output and hidden layer
- $\Delta w_{11}, \Delta w_{12}, \Delta w_{13}$, and $w_{11}(n e w), w_{12}$ (new), w_{13} (new) between hidden layer and input layer.
- Illustrate the new Neural Network.

The information for the Neural Networks configurations is as follows.
Given $\eta=0.1$ and $\alpha=0.1$.
Back propagation is not required to be derived.
Sigmoid function; $f(x)=\left(1+e^{-x}\right)^{-1}$
$f(x)=x$
The error signals are as follows.

$$
\begin{aligned}
& \delta_{k}=L_{k}\left(1-L_{k}\right)\left(t_{k}-L_{k}\right) \\
& \delta_{j}=L j\left(1-L_{j}\right) \sum_{k} \delta_{k} w_{k j}
\end{aligned}
$$

Adaptions of weights are defined as below.

$$
\begin{aligned}
& \Delta w_{k j}(t+l)=\eta \delta_{k} L_{j}+\alpha \Delta w_{k j}(t) \\
& \Delta w_{j i}(t+l)=\eta \delta_{j} L_{i}+\alpha \Delta w_{j i}(t)
\end{aligned}
$$

Figure 3: A Multilayer Neural Network

