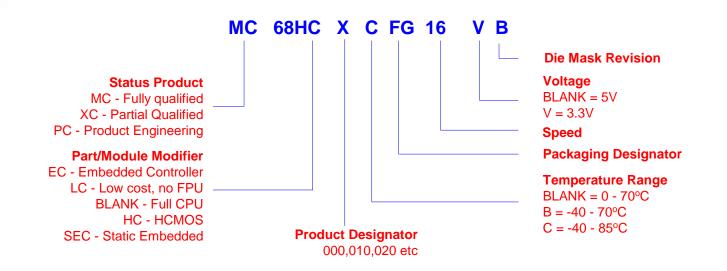




**Chapter 9** 

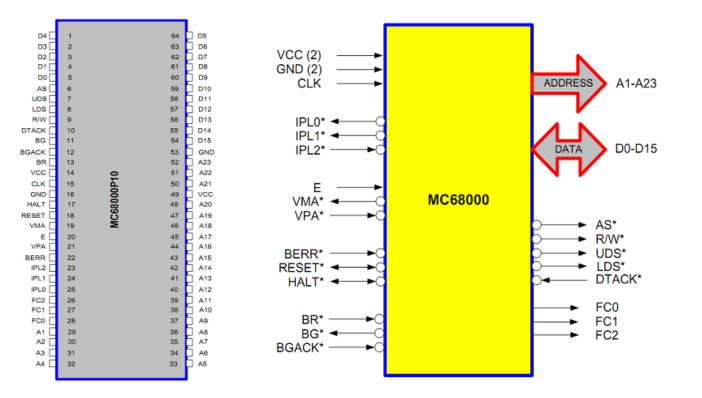
## Hardware Architecture of 68000


#### **Expected Outcomes**

- Describe the internal architecture of 68000
- Describe general specification of 68000 microprocessor
- Outline the processor's control signals name and functions
- Sketch the general timing signal for read and write operation

# **68xxx Family**




## Product Numbering System for the 68xxx Family (Motorola Product)







## **Pin Configuration**







## 68000 Manufacturer

| Manufacturer             | Description                           |
|--------------------------|---------------------------------------|
| Apple 68000-8            | 8 MHz, 64-pin side-brazed ceramic DIP |
| Hitachi HD68000-8        | 8 MHz, 64-pin side-brazed ceramic DIP |
| Mostek MK68000-8B        | 8 MHz, 64-pin plastic DIP             |
| Motorola XC68000L        | 64-pin side-brazed ceramic DIP        |
| Rockwell R68000C8        | 8 MHz, 64-pin side-brazed ceramic DIP |
| SGS-Thompson TS68000CP10 | 10 MHz, 64-pin plastic DIP            |
| Signetics SCN68000C4164  | 4 MHz, 64-pin side-brazed ceramic DIP |
| Thompson TS68000CFN16    | 16 MHz, 68 Lead plastic LCC           |
| Toshiba TMP68HC000P-10   | 10MHz, 64-pin plastic DIP             |
| Motorola MC68HC000LC8    | 8 MHz, 64-pin side-brazed ceramic DIP |
| Hitachi HD68000Y10       | 10 MHz, 68-pin ceramic PGA            |





## 







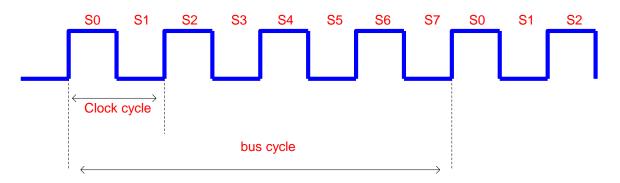






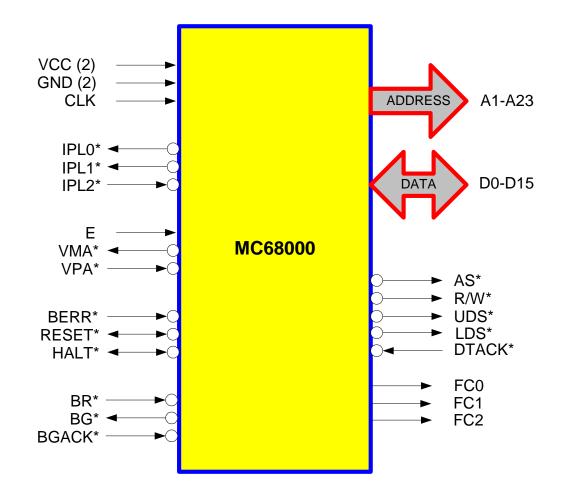
# **Timing Diagram**

#### Instruction cycle


A complete cycle for 68000 to read and execute an instruction

### Bus cycle

Time for 68000 to read or write a byte/word from memory


## Clock cycle (cc)

Time between two consecutive positive edge and equal to clock duration and require 4 cc in each bas cycle













## **Power, Clock, data and address bus**

#### ■ VCC and GND

- Power supply to 68000 with 2 pin each for VCC and GND
- $\blacksquare$  5V <u>+</u> 5% for  $\bigtriangledown$  CC with power consumption of 1.5W at 8MHz and current about 0.3A
- **CLK** Various clock of 4, 6, 8, 10, 12.5, 16.67 and 25 MHz
- DO-D15 Bidirectional data bus that are used to transfer data in or out of CPU
- **DDS\* and LDS\* to allow byte and word operation**





## **Asynchronous Signal for Hardware Operation**

## AS\* (Address Strobe) - output

When AS\* goes low, A1-A23 are valid address

## **R/W**\* (Read/Write) - output

Determine read (high) or write (low) operation

## **UDS**\* (Upper Data Strobe) - output

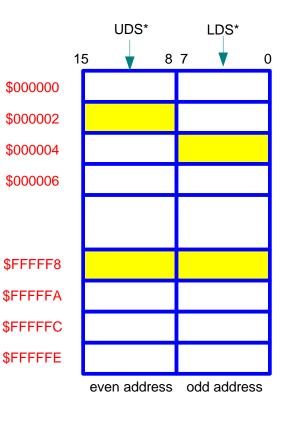
- Control the transfer of upper data bus (D8-D15)
- LDS\* (Lower Data Strobe) output
  - Control the transfer of upper data bus (D0-D7)





### **DTACK\*** (Data Transfer Acknowledge) - input

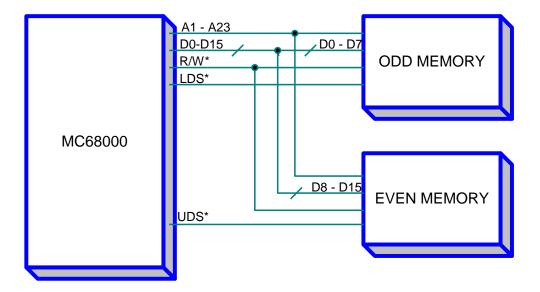
- When CPU receives a low signal, it assumes this is the end of bus cycle
- I/O device must activate the DTACK pin correctly


| Signal | Function (when asserted)                                   |
|--------|------------------------------------------------------------|
| AS     | Output signal indicating valid memory address available on |
|        | address bus                                                |
| R/W    | Output signal indicating read cycle when HIGH and write    |
|        | cycle when LOW                                             |
| UDS    | Together with LDS signal, output an encoded signal based   |
|        | on internal state of A0 address line                       |
| LDS    | Together with UDS signal, output an encoded signal based   |
|        | on internal state of A0 address line                       |
| DTACK  | Input signal indicating data transfer during read/write    |
|        | cycle is completed                                         |





# **Memory Map**

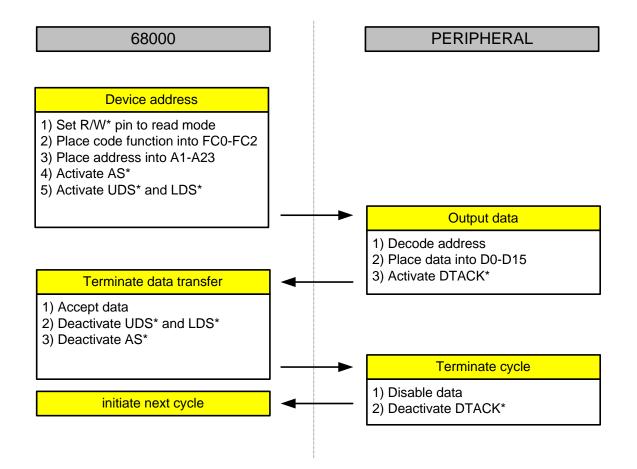

- Due to the data bus size of 16-bit, memory map is consisted of two byte
   UDS\* and LDS\* are used to access even and odd location respectively
   To access a byte of odd address,
  - Io access a byte of odd addres
    UDS\*=1, LDS\*=0
  - To access a byte of even address, UDS\*=0, LDS\*=1
  - To access a word, UDS\*=0, LDS\*=0







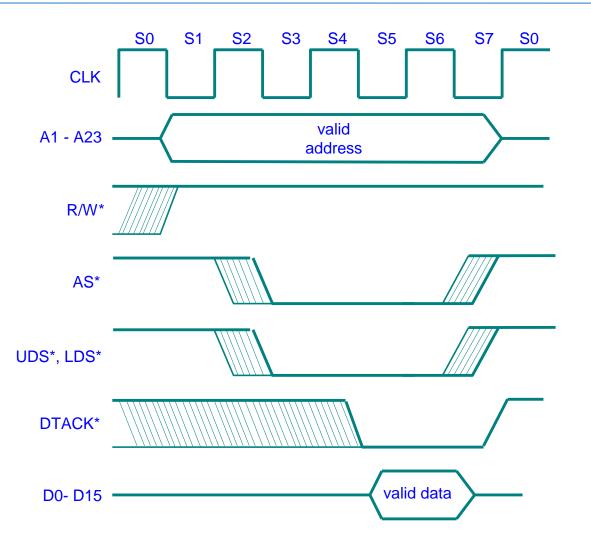
## **Byte Addressing**




| UDS* | LDS* | R/W* | D8 - D15     | D0 - D7      |              |  |
|------|------|------|--------------|--------------|--------------|--|
| 1    | 1    | -    | Illegal data | lllegal data |              |  |
| 0    | 0    | 1    | Bit 8 - 15   | Bit 0 - 7    | 16-bit read  |  |
| 1    | 0    | 1    | lllegal data | Bit 0 -7     | 8-bit read   |  |
| 0    | 1    | 1    | Bit 8 - 15   | lllegal data | o-bit reau   |  |
| 0    | 0    | 0    | Bit 8 - 15   | Bit 0 - 7    | 16-bit write |  |
| 1    | 0    | 0    | Illegal data | Bit 0 - 7    | 8-bit write  |  |
| 0    | 1    | 0    | Bit 8 - 15   | lllegal data |              |  |





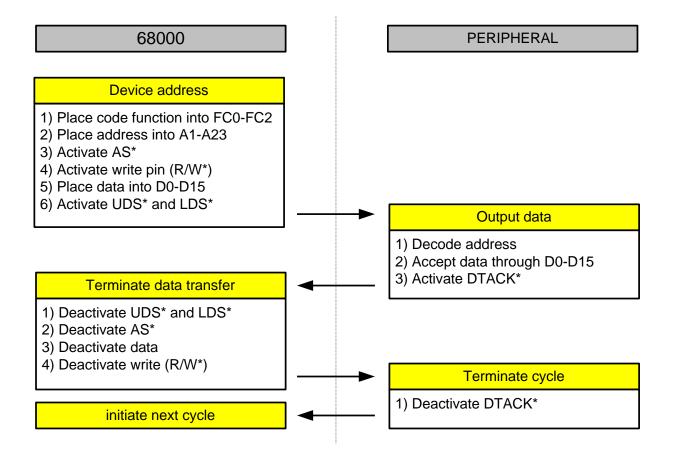

## **Timing Diagram - READ**







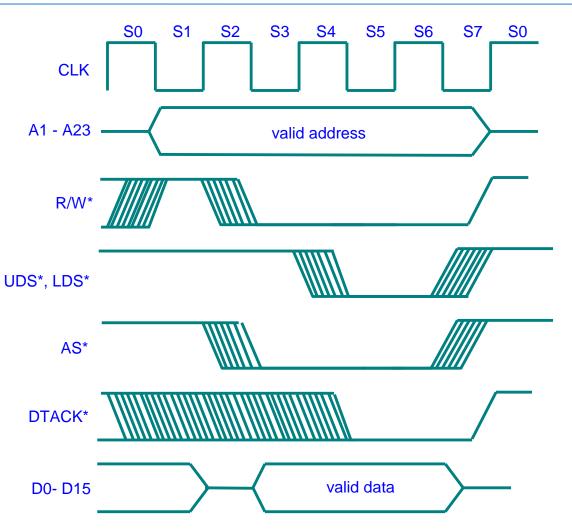
# **Timing Diagram - READ**






NMKNYFKEEUMP




## **Timing Diagram - WRITE**







# **Timing Diagram - WRITE**



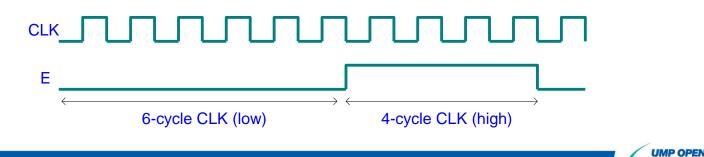


NMKNYFKEEUMP



# **Interfacing With 6800 Peripheral**

Most cases, 68000 uses 6800 peripherals as interface devices due to low cost


Three control signals are used to ensure functionality of the system

### E (Enable clock) – output

Generate timing signal for 6800 peripherals and is derived from the 68000's clock by dividing it by 10 with resulting waveform having 40% duty cycle

VPA\* (Valid Peripheral Address) – input

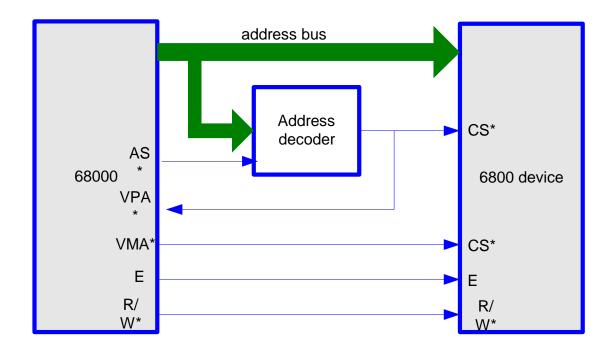
Inform 68000 that it has addressed a 6800 peripheral and that the data transfer should be synchronized with E clock





## VMA\* (Valid Memory Address) – output

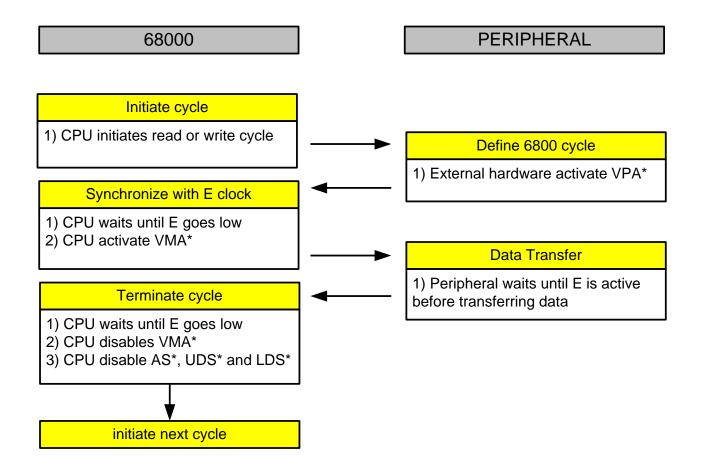
Goes low when the processor synchronizes with E clock allowing data transfer


| Signal | Function (when asserted)                                |
|--------|---------------------------------------------------------|
| E      | Output a synchronous timing (clock) for proper          |
|        | information transfer between the microprocessor and the |
|        | M6800 peripheral devices                                |
| VPA    | inform the microprocessor that an M6800 peripheral      |
|        | device has been addressed and data transfer to be       |
|        | synchronized with E clock                               |
| VMA    | inform M6800 peripheral device that it has been         |
|        | addressed by the address bus and data transfer is       |
|        | synchronized to E clock                                 |





# **Interfacing With 6800 Peripheral**


Interface with peripheral devices involves E, VMA\* and VPA pins to ensure proper functionality of the system as 6800 devices operate in synchronous mode







# **Interfacing With 6800 Peripheral**







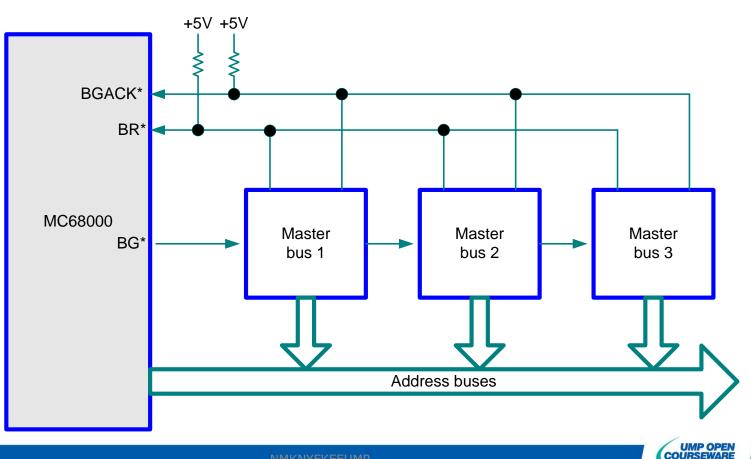
# **Bus Arbitration**

- This bus signals are used in multiprocessor system and DMA
- It allows external device to take over control of the bus (master) and place 68000 in wait state
- BR\* (Bus Request) input
  - The requesting device requests use of 68000 buses by activate this pin (goes low)

## ■BG\*( Bus Grant) – output

68000 respond by activate this pin (goes low) and it will release control of its buses at the end of the current cycle

## **BGACK\* (Bus Grant Acknowledge) – input**


The requesting device informs to the 68000 of bus control and it must wait until the bus cycle is terminated before issue this acknowledgement





# **Bus Arbitration**

This arbitration signals are required to allow more than one processor to control buses





# **Exception Processing**

- 68000 microprocessor operates in two modes; user execution mode and supervisor execution mode
- In user execution mode, the microprocessor operates in normal processing environment suitable for user's application programs
- Supervisor mode provides programmers with full access to the microprocessor's instructions and status register
- The mode is determined by the thirteenth bit (S-bit) in the status register. Setting the S-bit in the status register puts the microprocessor in the supervisor mode
- Exception is one of the three processing states of a microprocessor. This is the processing state where microprocessor handles all internally or externally generated exceptions
- Examples of exception are external hardware interrupts, external hardware RESET, internal RESET/TRAP instructions, tracing, bus error and execution errors





# **Exception Vector**

| Vector Number | Address (\$) | Assignment                      |
|---------------|--------------|---------------------------------|
| 0             | 000          | RESET: Initial SSP              |
| 1             | 004          | RESET: Initial PC               |
| 2             | 008          | Bus Error                       |
| 3             | 00C          | Address Error                   |
| 4             | 010          | Illegal Instruction             |
| 5             | 014          | Zero Divide                     |
| 6             | 018          | CHK Instruction                 |
| 7             | 01C          | TRAPV Instruction               |
| 8             | 020          | Privilege Violation             |
| 9             | 024          | Trace                           |
| 10            | 028          | Line 1010 Emulator              |
| 11            | 02C          | Line 1111 Emulator              |
| 12-14         | 030-038      | Reserved                        |
| 15            | 03C          | Uninitialized Interrupt Vector  |
| 16-23         | 040-05C      | Reserved                        |
| 24            | 060          | Spurious Interrupt              |
| 25-31         | 064-07C      | Interrupt Auto-vector Level 1-7 |
| 32-47         | 080-0BC      | TRAP Instruction Vectors        |
| 48-63         | 0C0-0FF      | Reserved                        |
| 64-255        | 100-3FC      | 192 User Interrupt Vectors      |



#### Universiti Malaysia PAHANG Ergineergi - Technology - Greativy

# **Self-Test**

### **Exercise**

Explain the difference between synchronous and asynchronous data bus transfer and explain the bus signals used in each method

#### **Exercise**

State the number of data and address bus for 68000. Explain why the AO pin is not part of 68000

#### Exercise

State the logic of UDS\*,LDS\*,AS\*,A13 and R/W\* when

(i) a byte write to address \$4000

(ii) a byte read from address \$5678

(iii) a word write to address \$6542



# **Self-Test**



#### Exercise

Explain the importance of DTACK pin in asynchronous data bus transfer

#### Exercise

Briefly explain the use of wait states in memory access

### Exercise

State the bus direction for each pin

 (i) DTACK\*
 (ii) D8
 (iii) A6
 (iv) R/W\*

 (v) BGACK\*
 (vi) VPA\*
 (vii) E
 (viii) UDS\*

