
Chapter 8

Subroutine

Expected Outcomes
Describe and apply the stack for data storage
Describe the process of subroutine in any programs
Develop a subroutine and code
Interpret subroutine process in the stack
Write and calculate a delay subroutine

NMKNYFKEEUMP

Stack

Stack is a special area in memory and normally it is used to keep
track of and store CPU register information during execution

Most stack uses LIFO concept

It has a stack pointer (SP) to indicate where to push or pull data
and A7 is used for this purpose

To store data, CPU pushes it onto the stack and then decrements
the SP

To recover data from the stack, it increments the SP and then pulls
the data

The stack grows toward low memory addresses

NMKNYFKEEUMP

Stack Pointer

Stack must be located in RAM location and normally place above
program and data

Stack pointer must be initialized at the beginning of the program

Stack Pointer

storage

information

NMKNYFKEEUMP

Push & Pull Instruction

ARI with pre-decrement and ARI with post-increment are required
to perform the push and pull operation

Push:

Pull:

MOVE.s Source,-(SP)

MOVE.s (SP)+,destination

NMKNYFKEEUMP

Initialize Stack Pointer

To initialize stack pointer

where BASE is the end address of a stack

MOVEA.L #BASE,SP

Stack Pointer

stack

program

data

base

moving

upward

moving

downward

NMKNYFKEEUMP

Subroutine

Subroutine is a section of a program that may be used one or
more times

With subroutine, the program is much simpler, short, efficient and
more understandable

The main program calls subroutine to perform certain steps using
the instruction JSR (jump to subroutine) or BSR (branch to
subroutine)

It executes the subroutines until the instruction RTS (return from
subroutine)

It returns to main program and continues at the instruction
following instruction JSR or BSR

NMKNYFKEEUMP

Subroutine

* Main program

START ……

JSR SUB ; call routine

……

BSR SUB ; call routine

……
* Subroutine

SUB ……

RTS

NMKNYFKEEUMP

JSR Operation

In order to return to main program, the current PC must be stored in
the stack

Old stackSP N

home addressPC

Before Call Subroutine (JSR)

Old stackSP N - 4

subroutine addrPC

After Call Subroutine (JSR)
home address

 (32 bits)

NMKNYFKEEUMP

RTS Operation

In order to return to main program, the return address of main
program must be placed back to the PC.

RTS will ensure the procedure is followed

Old stack

SP N

PC

Before RTS

Old stackSP N + 4

home addressPC

After RTS

home address

 (32 bits) N

N+4

N+4

NMKNYFKEEUMP

JSR & RTS Operation
ORG $2000

STACK EQU *

2000 START MOVEA #STACK,SP

2004 NOP

2006 JSR SUB

200A RET1 NOP

200C JSR SUB

2010 RET2 NOP

2012 BRA *

2014 SUB NOP

2016 RTS

Stack before 1st subroutine

$2000SP

$1FFE

$1FFC

Stack after 1st subroutine

$2000

SP

200A$1FFE

0000$1FFC

Stack after 2nd subroutine

$2000

200A$1FFE

0000$1FFCSP

NMKNYFKEEUMP

Protecting Registers

When subroutine is executed,
the content of registers may
alter if the registers are used
in the subroutine

Thus, the register need to be
stored in stack

Following is one way to
secure the content of registers
(In this case, register D1-D2
and A3,A6)

MOVE.L D1, -(SP)

MOVE.L D2, -(SP)

MOVE.L A3, -(SP)

MOVE.L A6, -(SP)

….content of

subroutine….

MOVE.L (SP)+, A6

MOVE.L (SP)+, A3

MOVE.L (SP)+, D2

MOVE.L (SP)+, D1

RTS

NMKNYFKEEUMP

MOVEM Instruction

Another alternative way to store the content of register is using
the MOVEM (move multiple registers) instruction

Syntax

Following is an example to store register D1-D3 and A3, A4, A6

MOVEM.L D1-D3/A3-A4/A6, -(SP)

…content of subroutine…

MOVEM.L (SP)+, D1-D3/A3-A4/A6

RTS

MOVEM.s <list registers>,-SP

MOVEM.s SP+, <list registers>

NMKNYFKEEUMP

Macros vs Subroutines

Both permits a group of instruction to be defined in a single entity
with a unique given label or name called up when needed

A subroutine is called by BSR or JSR instructions, while macro is
called by simply its name

Macros are not substitute for subroutines

Support for subroutines is provided by CPU as it is part of
instruction set, while support for macros is part of the assembler

NMKNYFKEEUMP

Self-Test

Exercise

If SP=$00400000C and PC=$00400500, what is the
value of SP when JSR $00400600 is executed ?

Exercise:

Calculate the value of SP if the following program is executed

ORG $4000

START MOVEA #$2000,SP

MOVEM.L D0-D2/A0/A4-A6,-(SP)

NMKNYFKEEUMP

