

Intelligent Control

Fuzzy Logic (3b)

by
Dr. Nor Maniha Abdul Ghani
(Credit to D.Pebrianti)
FKEE
normaniha@ump.edu.my

Contents

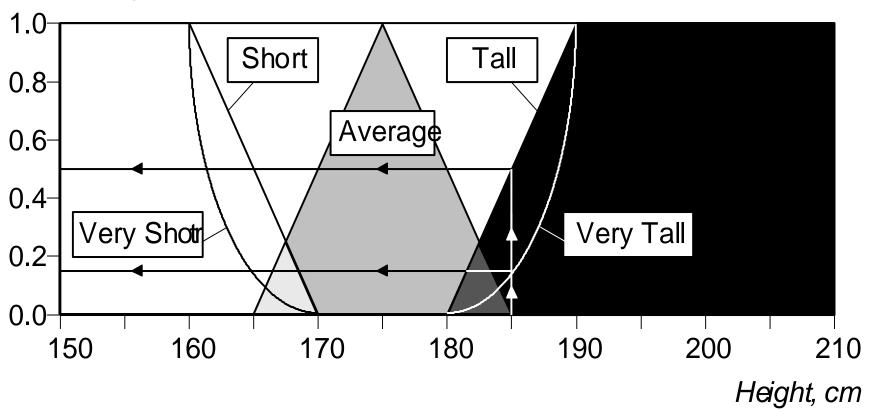
- 3.3 Fuzzy Set Operation
- 3.4 Fuzzy Relation

Fuzzy Set Operation

3.3

Linguistic: Affection in Fuzzy

- IF sun is shining, THEN temperature is hot.
- IF people is happy, THEN society is at peace.
- IF stomach is full, THEN?


Linguistic variable → fuzzy variable

- Linguistic variable has hedges
 - Hedges
 - Act as fuzzy set qualifiers
 - Expression on adverbs; little, few, most, extreme, some
 - Reflects human thinking
 - Creates sets of individual operation; dilation(expansion), concentration
 - Continuum→fuzzy intervals; from tall, average, short to slightly tall, tall, moderately tall etc.

Fuzzy sets with the hedge very

Degree of Membership

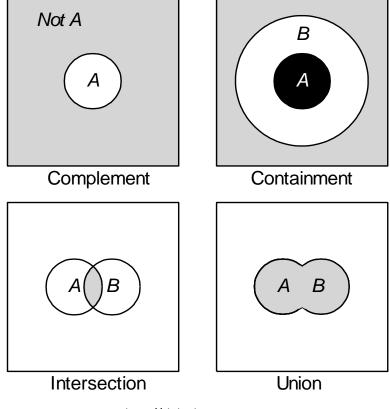
http://slideplayer.com

Hedges in fuzzy logic

Hedge	Mathematical Expression	Graphical Representation
A little	$\left[\mu_{\mathcal{A}}(x)\right]^{1.3}$	
Slightly	$\left[\mu_{\mathcal{A}}(x)\right]^{1.7}$	
Very	[μ _Α (x)] ²	
Extremely	[μ _Α (<i>x</i>)] ³	

http://slideplayer.com

Hedges in fuzzy logic (cont'd)



Hedge	Mathematical Expression	Graphical Representation
Very very	$\left[\mu_A(x)\right]^4$	
More or less	$\sqrt{\mu_{A}(x)}$	
Somewhat	$\sqrt{\mu_A(x)}$	
Indeed	$2 \left[\mu_{A}(x) \right]^{2}$ if $0 \le \mu_{A} \le 0.5$ $1 - 2 \left[1 - \mu_{A}(x) \right]^{2}$ if $0.5 < \mu_{A} \le 1$	

Operations of fuzzy sets

The classical set theory developed in the late 19th century by Georg Cantor describes how crisp sets can interact. These interactions are called **operations**.

■ Complement

Complement
A'
$$\mu_{A'}(x) = 1 - \mu_{A}(x)$$

for all $x \in X$

Tall men: (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)

NOT Tall men: (1/180, 0.75/182.5, 0.5/185, 0.25/187.5, 0/190)

■ Containment

Containment
$$A \subseteq B$$

 $\mu_A(x) \le \mu_B(x)$

for all $x \in X$

Tall men: (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)

Very tall men: (0/180, 0.1/182.5, 0.4/185, 0.3/187.5, 1/190)

Intersection

Intersection

$$A \cap B$$

$$\mu_{A \cap B}(x) = \min(\mu_{A}(x), \mu_{B}(x))$$

for all $x \in X$

Tall men: (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)

Very tall men: (0/180, 0.1/182.5, 0.4/185, 0.3/187.5, 1/190)

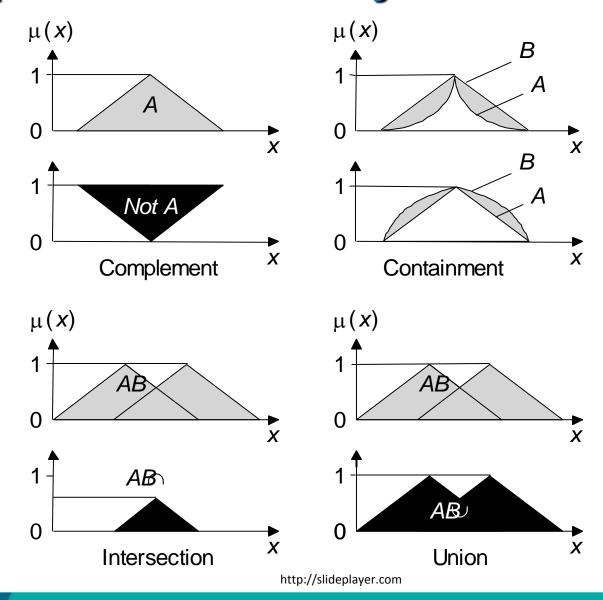
So, $\mu_{AOB}(x) = (0/180, 0.1/182.5, 0.4/185, 0.3/187.5, 1/190)$

Union

Union
$$A \cup B$$

$$\mu_{A \cup B}(x) = \max(\mu_{A}(x), \mu_{B}(x)) \qquad \text{for all } x \in X$$

Tall men: (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)


Very tall men: (0/180, 0.1/182.5, 0.4/185, 0.3/187.5, 1/190)

So, $\mu_{AUB}(x) = (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)$

Operations of fuzzy sets

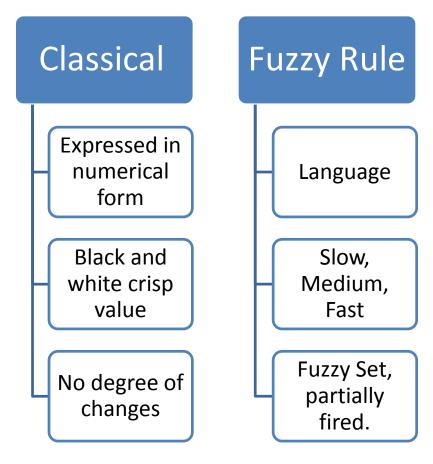
Fuzzy Relation

3.4

Fuzzy rules

First paper introduced fuzzy rules by Zadeh, 1973.

http://www.cs.Berkeley.edu/~zadeh


A fuzzy rule can be defined as a conditional statement in the form:

where x and y are linguistic variables; and A and B are linguistic values determined by fuzzy sets on the universe of discourses X and Y, respectively.

http://slideplayer.com

Dr. Nor Maniha Abdul Ghani

Faculty of Electrical and Electronics Engineering Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia Phone: +609-424-6087

Fax: +609-424-6000

http://fkee.ump.edu.my/index.php/en/staff-menu/articles-staff/1034-niha-main-profile

