

Intelligent Control

Expert System (2b)

by Dr. Nor Maniha Abdul Ghani (Credit to D.Pebrianti) FKEE normaniha@ump.edu.my

Chapter Description

At the end of this topic , student should be able to:-

• Understand the concept of expert system.

2.5 Forward and backward chaining

2.6 Conflict resolution

Expert system characteristic

2.4

Complete structure of a rule-based expert

BY NC ND

=

۹Ì'

(CC)

Communitising Technology

Expert System by

Characteristics of an expert system Viniversiti Malaysia PAHANG

To perform at a human expert level in a *narrow, specialised domain*.

Has high-quality performance. The result must be correct. Fast and reliable. E.g. Consider time for dying patient in ICU.

ES use **heuristics** as a guidance and reduce the searching area for a solution.

Able to explain its decision and review its own reasoning.

ES utilize **symbolic reasoning** to solve problem. Symbols such as facts, concepts and rules are used

QUALIFYING CHARACTERISTICS OF EXPERT SYSTEMS

ES are suitable in a case where/when:

QUALIFYING CHARACTERISTICS OF EXPERT SYSTEMS (Cont'd.)

ES are not suitable in a case where/when:

The systems are calculative or deterministic in nature.

There is a standard model or formula.

So many human experts.

Knowledge base is needed by end users.

Comparison of expert systems with conventional systems and human experts

Human Experts	Expert Systems	Conventional Programs
Use knowledge in the form of rules of thumb or heuristics to solve problems in a narrow domain.	Process knowledge expressed in the form of rules and use symbolic reasoning to solve problems in a <i>narrow</i> <i>domain</i> .	Process data and use algorithms, aseries of well-definedoperations, to solve general numerical problems.
In a human brain, knowledgeexists in a compiled form.	Provide a <i>clear</i> separation of knowledge from its processing.	Do not separate knowledge from the control structure to process this knowledge.
Capable of explaining a line of reasoning and providing the details.	<i>Trace the rules fired</i> during a problem-solving session and <i>explain how</i> a particular conclusion was reached and <i>why</i> specific data was needed.	Do not explain how a particular result was obtained and why input data was needed.

http://slideplayer.com

Expert System by N.M.A Ghani

Comparison of expert systems with

conventional systems and human experts (Contd)

Human Experts	Expert Systems	Conventional Programs
Use inexact reasoning and can deal with incomplete, uncertain and fuzzy information.	Permit <i>inexact reasoning</i> and can deal with incomplete, uncertain and fuzzy data.	Work only on problems where data is complete and exact.
Can make mistakes when information is incomplete or fuzzy.	Can make mistakes when data is incomplete or fuzzy.	Provide no solution at all, or a wrong one, wh en data is incomplete or fuzzy.
Enhance the quality of problem solving via years of learning and practical training. This process is slow, inefficient and expensive.	Enhance the quality of problem solving by adding new rules or adjusting old ones in the knowledge base. When new knowledge is acquired, <i>changes are</i> <i>easy</i> to accomplish.	Enhance the quality of problem solving by changing the program code, which affects both the knowledge and its processing, making changes difficult.

Expert System Application areas

Group Activity

- Given the following fields, select an area that your group is most expert with.
 - Industrial application/manufacturing
 - Robotics
 - Oil & gas
 - Troubleshooting in Electrical & Electronics
- Identify your problem domain and objectives
- Construct a flowchart to describe your system.
- The expert system must have at least 10 rules and 2 conclusion.

Forward and backward chaining

2.5

Forward chaining and backward chaining

Forward Chaining

Inference engine cycles via a match-fire procedure

BY NC ND N.M.A Ghani

Expert System by

An example of an inference chain

Rule 1:IFY is trueANDD is trueTHENZ is true

- Rule 2:IFX is trueANDB is trueANDE is trueTHENY is true
- Rule 3:IFA is trueTHEN X is true

http://slideplayer.com

Forward chaining

Data-driven reasoning.	Only the topmost rule is executed each time .	Starts from known data.
The rule adds new fact in the database when fired.	The match-fire cycle stops when no further rules.	The reasoning process forward.
	Any rule can be executed only once.	

Forward chaining

Goal state: Z

Termination condition: stop if Z is derived or no further rule can be applied

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/Al/I2.html

Backward chaining

http://www.cs.bham.ac.uk

So how to choose between methods?

Universiti Malaysia PAHANG

Conflict Resolution

2.6

Conflict resolution

Rule 1

- IF the lamp switch is turned ON
- THEN the bulb is bright.

Rule 2

- IF the lamp switch is turned OF
- THEN the bulb is dark.

Rule 3

- IF the lamp switch is turned OF
- THEN the bulb is bright.

Advantages/Disadvantages of rule-based expert systems

-Natural knowledge representation.

-Uniform structure.

-Separation of knowledge from its processing.

- Dealing with incomplete and uncertain knowledge.

-No transparent relation between RULE.

-Ineffective search strategy.

-Inability to learn.

-Not able to learn from experience.

Dr. Nor Maniha Abdul Ghani

Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia Phone: +609-424-6087 Fax: +609-424-6000

http://fkee.ump.edu.my/index.php/en/staff-menu/articles-staff/1034-niha-main-profile

