
Chapter 3

Introduction to 68000 Instruction

Sets

Expected Outcomes

Explain the type of addressing modes in the 68000

Compare the different instruction sets in the 68000

NMKNYFKEEUMP

There are two type of instruction sets

Machine code
String of bits, complex and the only code understand by CPU

Can be 2 – 10 byte size for each instruction

Assembly code
Simple and easy to understand

54 basic instructions but can be more than 1000 if all variations are
considered

Introduction

Machine Code

0001110010100011

1110011011100011

1110011001101010

1010000110101001

1100001110010101

0011111001101011

Assembly

CLR.W D0

MOVE.B $100, D2

EXG D2, A1

MULS D1, D7

ADD.L #$5463,D3

NMKNYFKEEUMP

The instruction at least must be 2 byte long and not more than 10
byte long

The first word is known as word operation:

Instruction type (add, multiply etc)

Data size (byte, word or longword)

Numbers of byte in the instruction

Additional information (operand) to access data

Machine Code Instruction

word operation word operation word operation word operationword operation

16-bit constant 16-bit address 16-bit address

16-bit address
32-bit address

32-bit constant

32-bit address

NMKNYFKEEUMP

Instruction Cycle

Microprocessor executes program continuously
Two main phases
Fetch phase

PC is pointed the address of instruction
Fetch the instruction from memory and place in IR
Control unit translate the instruction as it updates the PC

Execution phase
Calculate the operand address
Fetch the operand
Execute the operation
Store the result
Return to fetch phase

FETCH PHASE
EXECUTION

PHASE

NMKNYFKEEUMP

Instruction Cycle

PC always points the address of next instruction

Instruction 1

Instruction 3

Instruction 2

$5000

$5002

$5004

$5006

Instruction 1

Instruction 3

Instruction 2

$5000

$5002

$5004

$5006

PC = $00005000

PC = $00005002

Instruction 1 IR

CPU

Instruction 1 IR

Control Unit

NMKNYFKEEUMP

Basic Instruction Sets

Type of instruction sets

Data Movement such as MOVE, MOVEA and MOVEQ
Integer Arithmetic such as ADD, MULU and DIVU
Boolean such as AND, EORI and NOT
Shift & Rotate such as ROL, ASL and LSR
Bit Manipulation such BSET, BCHG and BCLR
Binary Coded Decimal such as ABCD and NBCD
Program Flow such as BRA, JMP and BNE
System Control such as TRAP

NMKNYFKEEUMP

Data Movement

Instruction Description Example

MOVE Copy an 8-,16- or 32-bit from one

location/register to another location/register

MOVE.B D0,D2

MOVE.L #40,$1000

MOVEA

Copy a source operand to an address reg.

Only word or longword operation. Word

operation will be sign-extended

MOVEA.W #$400,A2

MOVEA.L D0,A4

MOVEQ

Copy 8-bit signed number to any data

register. The data to be copied will be sign-

extended to 32-bit

MOVEQ #56,D4

MOVEQ #-44,D7

MOVEM

Transfers a group of registers specified by

a list. Operates only on word or longword

operation

MOVEM D0-D3,-(A7)

NMKNYFKEEUMP

Integer Arithmetic

Instruction Description Example

ADDx

SUBx

Add/Subtract the content of source to/from

the content of destination and store the

result in destination. One of the operand

must be Data register

ADD.B D0,D4

SUB.W #43,D7

ADD.L $100,D2

MULU

MULS

Multiply two 16-bit operands and place the

result in destination (32-bit). One of the

operand must be Data register. MULU is

for unsigned number and MULS is for

signed number

MULU #$234,D3

MULS $565,D6

DIVU

DIVS

For 32-bit dividend and 16-bit divisor

where the former must be data register.

The result of division is stored in low word

of destination and the remainder in upper

word of the destination

DIVU D3,D5

DIVS #$523,D3

NMKNYFKEEUMP

Integer Arithmetic

Instruction Description Example

EXT

Signed extended for data register to word
or longword. EXT.W is sign extended

from 8-bit to 16-bit where EXT.L is sign

extended from 16-bit to 32-bit

EXT.W D0

EXT.L D3

CLR

To place zeros to destination (memory

location or data register). Invalid for

address register or immediate mode

CLR.B D6

CLR.W $1234

CLR.L $34568

NEG
Obtain 2’s complement the content of

destination

NEG.W D2

NEG.B D7

NMKNYFKEEUMP

Boolean Operation

Instruction Description Example

AND

ANDI

Bit-wise AND operation. Normally, it is used

to clear certain bit of destination

AND.B D2,D3

ANDI.W #$3234,D7

OR

ORI

Bit-wise OR operation. Normally, it is used

to set certain bit of destination

OR.L D4,D7

ORI.B #%1001,D0

EOR

EORI

Bit-wise exclusive OR operation. Normally

used to toggle certain bit of destination

EOR.B D1,D2

EORI.L #$2344,D7

NOT 1’s complement operation NOT.L D3

NMKNYFKEEUMP

Bit Manipulation

Instruction Description Example

BSET

Bit test and set. The operation causes the

Z-bit to be set if the specified bit is zero

and forces the specified bit to be set

BSET.L #30,D3

BCLR

Bit test and clear. The operation causes

the Z-bit to be set if the specified bit is

zero and forces the specified bit to be

clear

BCLR.B #7,$1000

BCHG

Bit test and change. The operation causes

the Z-bit to be set if the specified bit is

zero and toggle the specified bit

BCHG.L D2,D6

BTST

Bit test operation. The operation causes

the Z-bit to be set if the specified bit is

zero and the Z-bit to be clear is the

specified bit is set

BTST.B #4,D5

NMKNYFKEEUMP

Shift & Rotate

Instruction Description Example

ASL

ASR

Arithmetic Shift Left

Arithmetic Shift Right

ASL.B #3,D3

ASR.L D2,D7

LSL

LSR

Logical Shift Left

Logical Shift Right

LSL.L #6,D6

LSR.L D2,D0

ROR

ROL

Rotate to the right

Rotate to the left

ROR.B #1,D0

ROL.L D2,D6

NMKNYFKEEUMP

Binary Coded Decimal

Instruction Description Example

ABCD

Add source operand and X-bit with the

content of destination using BCD

arithmetic. Only BYTE operation

ABCD D6,D7

SBCD

Subtract source operand and X-bit from

the content of destination using BCD

arithmetic. Only BYTE operation

SBCD D4,D3

NBCD
Subtract the destination operand and the

X-bit from zero

NBCD D0

NMKNYFKEEUMP

Program Flow

Instruction Description Example

BRA.S

BRA.L

Unconditional branch that place PC to a

new location. The offset is limited to 8-

and 16-bit only

BRA.S LABEL

JMP Like BRA, it is unconditional branch. It is

relative addressing that allows the

program to jump to any location in 68000

memory map

JMP LABEL

Bcc Conditional Branch that is based on CCR

flag

BNE LABEL

BCC LABEL

BSR

JSR

RTS

BSR(JSR) is used to branch to

subroutine. RTS is required at the end of

subroutine to allow the program to return

to main program

BSR LABEL

NMKNYFKEEUMP

System Control

Instruction Description

TRAP It performs three operations.

(1) Push PC and SR onto the stack (2) sets the execution

mode to supervisor mode (3) load the PC with a new value

from a vector table

STOP

RESET

STOP load the SR with the immediate operand and stops the

CPU. RESET asserts the CPU’s RESET line for 124 cycles. If

STOP and RESET are executed in user mode, a privilege

violation occurs

NMKNYFKEEUMP

Basics Instruction Sets

Example of instruction sets

ABCD Add decimal with extend
ADD Add binary
AND Logical AND
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
Bcc Branch Conditionally
BCHG Bit Test & Change
BCLR Bit Test & Clear
BRA Branch Always
BSET Bit Test & Set
BSR Branch to Subroutine
BTST Bit Test
CHK Check Register with Bounds
CLR Clear Operands

NMKNYFKEEUMP

Basics Instruction Sets

Example of instruction sets (continues….)

CMP Compare
DBcc Decrement & Branch Conditionally
DIVS Signed Divide
DIVU Unsigned Divide
EOR Exclusive OR
EXG Exchange Registers
EXT Sign Extend
JMP Jump to Effective Address
LEA Load Effective Address
LINK Link Stack
LSL Logical Shift Left
LSR Logical Shift Right
MOVE Move Source to Destination

NMKNYFKEEUMP

Basics Instruction Sets

Example of instruction sets (continues….)

MULS Sign Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NOP No Operation
NOT One’s Complement
OR Logical OR
PEA Push Effective Address
RESET Reset External Device
ROL Rotate Left
ROR Rotate Right
ROXL Rotate Left Through Extend
ROXR Rotate Right Through Extend

NMKNYFKEEUMP

Basics Instruction Sets

Example of instruction sets (continues…)

RTE Return from Exception

RTR Return & Store

RTS Return from Subroutine

SBCD Subtract Decimal with Extend

Scc Set Conditionally

STOP Stop Processor

SUB Subtract Binary

SWAP Swap Data Register Halves

TAS Test & Set Operand

TRAP Trap

TRAPV Trap on Overflow

NMKNYFKEEUMP

Variation of Instruction Set

Some of examples variation instruction set

ADD such as ADDI, ADDQ, ADDA, ADDX

CMP such as CMPI, CMPA, CMPM

MOVE such as MOVEQ, MOVEA, MOVEM, MOVEP

SUB such as SUBA, SUBQ, SUBI, SUBX

NMKNYFKEEUMP

Assembly Language

General format

<label> opcode<.field> <operand> <;comment>

Instruction Format for assembly language consists of

Label – pointer to the instruction’s memory location

Opcode - Operation code such as MOVE,CLR

Field – Define width of operand (B, W, L)

Comment – For documentation purposes

Operands – Data/address use in operation (source/destination)

- There may be no operand or 1 operand or 2 operands

NMKNYFKEEUMP

Operand

Operand can be

Registers such as D0, D5, A1, A7

Constant

Memory location

Examples of operand with basic addressing modes

Data register, Dn MOVE.B D2,D4

Register Indirect An CLR.B (A0)

Immediate MOVE.L #$100,D2

Absolute CLR.L $1000

Immediate operand can be specified in several format such as
hexadecimal, binary or even ASCII

NMKNYFKEEUMP

Operand

Instruction Comment

BRA REPEAT PC branch to label called REPEAT

NOP No operand

CLR.W 1 operand (destination)

ADD.B #100,D7
2 operand

100 is data source, D7 is destination

MOVE.L D2, D4
2 operand

D2 is source, D4 is destination

NMKNYFKEEUMP

Effective Address

Effective Address is the actual address of operand
The value of effective address is determined by the address
mode of the instruction
The address mode determines the number of byte used in each
instruction
The effective address is composed of two 3-bit fields: the mode
field and the register field

m m m r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mode register

NMKNYFKEEUMP

Effective Address

m m m r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mode register

Mode Register Address Mode Syntax

000 rrr Direct data register Dn

001 rrr Direct address register An

010 rrr Address Register Indirect (An)

011 rrr ARI with post-decrement (An)+

100 rrr ARI with pre-decrement -(An)

101 rrr ARI with displacement N(An)

110 rrr ARI with index & displacementN (An,Xm)

NMKNYFKEEUMP

Effective Address

m m m r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mode register

Mode Register Address Mode Syntax

111 000 Absolute short $XXXX

111 001 Absolute Long $XXXXXXXX

111 010 PC with displacement N(PC)

111 011 PC with Index N(PC, Xm)

111 100 Immediate #$XXXX

NMKNYFKEEUMP

Addressing Modes

Absolute Short – specifies 16-bit address in a single extension
word and it is sign-extended to 32-bit during execution

Absolute Long – requires 32-bit to specify 24-bit address

Immediate – requires the instruction include the operand as
integral part itself

Direct Data Register – the operand is data register itself

Direct Address Register – the operand is address register itself

Address Register Indirect – use address register as a pointer to a
target memory location

Address Register Indirect with Pre-decrement – use address
register as a pointer and decrement accordingly to point a target
memory location

NMKNYFKEEUMP

Addressing Modes

Direct Data Register

Direct Address Register

Address Register Indirect

Address Register Indirect with Post-increment

OperandData Register (Dn)

31 0

OperandAddress Register (An)

31 0

Memory

Address
Address Register (An)

31 0

OperandMemory Address

Memory

Address
Address Register (An)

31 0

OperandMemory Address

+
Operand Length

(1, 2 or 4)

NMKNYFKEEUMP

Addressing Modes

Address Register Indirect with Post-increment – use address
register as a pointer to point a target memory location and
increment accordingly

Address Register Indirect with Index and displacement – use
address register, data register/address register and 8-bit offset as a
pointer to point a target memory location

Address Register Indirect with displacement – use address
register and 16-bit offset as a pointer to point a target memory
location

Program Counter with displacement – use PC and 16-bit offset
as a pointer to point a target memory location

Program Counter with index– use PC and index as a pointer to
point a target memory location

NMKNYFKEEUMP

Addressing Modes

Program Counter with index

Address of

Extension Word
Program Counter (PC)

31 0

+Extension Word Sign Extended Integer

31 0

OperandMemory Address

+Index Register Sign Extended Integer

31 0

NMKNYFKEEUMP

Addressing Modes

Absolute Long

Program Counter with displacement

ConcatenationExtension Word

31 0

OperandMemory Address

Address

Low

15 0

Address

High

15 0

Address of

Extension Word
Program Counter (PC)

31 0

OperandMemory Address

+Sign Extended Integer

31 0

NMKNYFKEEUMP

Addressing Modes

Absolute Short

Address Register Indirect with Index and displacement

Memory

Address
Address Register (An)

31 0

+Sign Extended Index

31 0

OperandMemory Address

+Sign Extended Integer

31 0

Sign Extended

Memory Address
Extension Word

31 0

OperandMemory Address

NMKNYFKEEUMP

Addressing Modes

Address Register Indirect with displacement

Address Register Indirect with Pre-decrement

Memory

Address
Address Register (An)

31 0

OperandMemory Address

-
Operand Length

(1, 2 or 4)

Memory

Address
Address Register (An)

31 0

OperandMemory Address

+Displacement Sign Extended Integer

31 0

NMKNYFKEEUMP

Self-Test

Exercise
Names and briefly explain the difference between addressing
modes in MC68000
Exercise
Write the general format for instruction in MC68000 Assembly
Language. Briefly explain the role for each format
Exercise
The size of each instruction set can be 2 – 10 bytes. Why?
Exercise
Briefly explain the type of instruction sets in MC68000.

NMKNYFKEEUMP

