


PROCESS INTEGRATION Part 1: Heat Integration

Exercise Session Chapter 4-5

• Refer to: Smith, 2005

Stream	Description		
1	Fresh acetone going in the system.		
2	Fresh acetic acid going in the system.		
3	Distillation column 1 reboiler.		
4	Recycle acetic acid going to reactor 2.		
5	Flash/condenser		
6	Recycle acetic acid going to absorber		

Stream	Condition	FCp	T_{in} (°F)	Tout (°F)	Q available
No.		(Btu/hr°F)			10 ⁵ Btu/hr
1	Cold.	4893	77	133	-2.74
2	Cold	2173	77	129	-1.13
3	Cold	$5.0x10^{5}$	156	196	-205
4	Hot	1.23×10^4	244	77	21.0
5	Hot	2.75×10^{5}	176	128	132
6	Hot	1046	244	129	1.2
				Total =	-50.25

From the case study above with $\Delta T=10^{\circ}F$, answer all the questions below:

- Propose a new heat exchanger network (HEN) for energy savings
- 2. Estimate the maximum energy recovery (MER), hot utility, and cold utility based on the proposed design
- Redraw a new schematic diagram by including the heat exchangers based on the proposed design
- 4. If the hot utility available is from 350°F saturated steam, what can you further propose to reduce the cost?
- 5. Describe the answer of No. 8 on a grand composite curve

Thank you

