

PROCESS INTEGRATION Part 1: Heat Integration

Chapter 2: Cascade Diagram by Anwaruddin Hisyam Faculty of Chemical and Natural Resources Engineering ahisyam@ump.edu.my

Chapter Description

- Aims
 - To construct a cascade diagram from data extraction table
- Expected Outcomes
 - Students are able to construct a cascade diagram from extracted data

In this lecture we will learn how to construct a cascade diagram

From the table of extracted data

No	T source, C	T target, C	Heat duty, kW	СР	Туре
1	220	60	3520	22	Hot
2	270	160	1980	18	Hot
3	50	210	3200	20	Cold
4	160	210	2500	50	Cold

Set ΔT_{min} = 20 C

Shifted Stream Data

Hot - $\frac{1}{2}\Delta$ Tmin; Cold + $\frac{1}{2}\Delta$ Tmin

Shifted data

No	T source, C	T target, C	Heat duty, kW	СР	Туре
1	210	50	3520	22	Hot
2	260	150	1980	18	Hot
3	60	220	3200	20	Cold
4	170	220	2500	50	Cold

Cascade diagram

From the cascade diagram

- The amount of energy transferred for each temperature interval is identified.
- Energy balance of the system can be evaluated.

Thank you

