

Process Monitoring

by Mohd Yusri Mohd Yunus yusri@ump.edu.my

Process Monitoring

Chapter 3b Multivariate Statistical Process Monitoring

Process Monitoring

Chapter Description

- Aims
 - Analyze the process performance based on MSPM approach.
- Expected Outcomes
 - Develop a fault detection mechanism as well as perform investigation based on a specified case study by using a specialized software.
- Other related Information

Subtopics

3.13 Phase II: Fault Detection3.14 Phase II: Fault Identification

Process Monitoring

- Steps 5 to 7 follow similar procedures of steps 1 to 3 in phase I (all the main parameters – eigenvectors, eigenvalues, no. of data compression of Phase I, are utilised again in Phase II).
- Regarding step 8 (the last step), there are two main operations which have to be conducted separately - fault detection and fault identification.

Fault detection:

- A fault situation is regarded as a result of an occurrence of a special event that is not in conformance to the common cause nature.
- Technically, a fault situation will be declared if either of the monitoring statistics exceeding its respective control limit for a pre-defined successive number of samples consistently.

Monitoring progression of SPE on F2a based on PCA models with 3 PCs (top left) and 6 PCs (top right). Monitoring progression of T^2 on F2a based on PCA models with 3 PCs (bottom left) and 6 PCs (bottom right).

Monitoring progression of SPE on F2i based on PCA models with 3 PCs (top left) and 6 PCs (top right). Monitoring progression of T^2 on F2i based on PCA models with 3 PCs (bottom left) and 6 PCs (bottom right).

Fault Detection Sampling Time			
Fault Cases	PCs 5		
	T2	SPE	
1a	3	6	
2a	3	Х	
3a	3	3	
4a	3	3	
5a	3	3	
6a	3	3	
7a	Х	4	
8a	3	3	
9a	3	3	
10a	3	3	
11a	3	3	

Fault Detection		
Sampling Time		
(Summary)		
1a	3	
2a	3	
3a	3	
4a	3	
5a	3	
6a	3	
7a	4	
8a	3	
9a	3	
10a	3	
11a	3	

Fault Detection Delayed Time		
1a	1	
2a	1	
3a	1	
4a	1	
5a	1	
6a	1	
7a	2	
8a	1	
9a	1	
10a	1	
11a	1	

3.14 Phase II: Fault Identification

<u>Fault Identification</u> - the contribution plot technique is proposed to identify the potential variables that possibly connected to the detected problem.

Contribution plots of PCA with 3 dimensions for F3a (top left) and F3i (bottom left); contribution plots of PCA with 6 dimensions for F3a (top right) and F3i (bottom right)

References

- Green, P.E., and Carroll, J.D., (1976). *Mathematical Tools for Applied Multivariate Analysis.* New York, USA: Academic Press.
- Jackson, J.E., (1991). A User's Guide To Principal Components. John Wiley and Sons. USA.
- Martin., E.B., Morris, A.J., and Zhang, J. (1996). Process Performance Monitoring Using Multivariate Statistical Process Control. *Systems Engineering for Automation*, IEEE Proceedings.

Authors Information

Credit to the authors:

Process Monitoring