

Process Monitoring

by Mohd Yusri Mohd Yunus yusri@ump.edu.my

Process Monitoring

Chapter 3a Principal Component Analysis

Exercises

Questions from final exam paper of SemII 11-12:

- 1. Describe the basic concept of eigenvectors and eigenvalues respectively.
- 2. Explain on the objective characteristic that must be complied by **T** in order to develop **Z** in the following equation.
 - $\mathbf{Z} = \mathbf{X}_{d}\mathbf{T}$ whereby, $\mathbf{Z} = \mathbf{PC}$ scores, $\mathbf{X}_{d} = \mathbf{S}$ standardized data, $\mathbf{T} = \mathbf{E}$ eigenvectors
- 3. Suppose two sets of eigenvectors given by $\mathbf{Ta} = \begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix}$ and $\mathbf{Tb} = \begin{bmatrix} 0.80 & -0.80 \\ 0.60 & 0.60 \end{bmatrix}$ are to be analyzed to transform a particular variance-covariance matrix $(\mathbf{X}_{da}) = \begin{bmatrix} 14.19 & 10.69 \\ 10.69 & 8.91 \end{bmatrix}$. Please justify which one of these transformation matrices that must be chosen in appropriately

References

- Green, P.E., and Carroll, J.D., (1976). Mathematical Tools for Applied Multivariate Analysis. New York, USA: Academic Press.
- Jackson, J.E., (1991). A User's Guide To Principal Components. John Wiley and Sons. USA.

Authors Information

Credit to the authors:

Process Monitoring