

Process Monitoring

by Mohd Yusri Mohd Yunus yusri@ump.edu.my

Process Monitoring

Chapter 3a Principal Component Analysis

Process Monitoring

Chapter Description

- Aims
 - Understand the basic principles of multivariate techniques.
- Expected Outcomes
 - Comprehensively explain in writing as well as solve mathematically the principles of multivariate analysis based on complex monitoring problem of MSPM framework.
- Other related Information

3.8 Variance-Covariance Transformation 3.9 Matrix Rank

Process Monitoring

In the dimensional reduction of multivariate data technique, the main aim is always to find a single linear composite (\mathbf{Z} scores), such that the variance of this model is maximized under a set of

orthogonal basis vectors, U.

- It means that the original samples are maximally separated along the linear composite, U according to the original variance.
- This is an attempt of accounting for <u>as much</u> <u>as possible of the original variation</u> shared by the contributory variables that projected onto the new basis vectors, U.

 The variance-covariance measure of the newly transformed data can be obtained prior to transformation:

$\mathbf{C}(\mathbf{Z}) = \mathbf{U}'\mathbf{C}(\mathbf{X})\mathbf{U}$

- Where, C(Z) = the new var-cov matrix
 - **C(X)** = the original var-cov matrix
 - **U** = eigenvectors
- The original variance-covariance matrix, C(X) is diagonalized by U into C(Z).

Important Properties:

- The sum of the main diagonal entries C(Z) is equal to the sum of the main diagonal entries of C(X), whereby the 1st entry will always be the largest => maximally distributed according to the original variance.
- The off-diagonal entries are much smaller in absolute value then their counter part entries in C(X) => the transformed data are not correlated with each other.

3.9 Matrix Rank

- The rank of A, denoted by r(A), is defined as the maximum number of linearly independent rows (columns).
- If $r(\mathbf{A})=k$, then there exist k rows and k columns, where $k \leq \min(m, n)$.
- The number of <u>nonzero or positive eigenvalues</u> of A is equal to its rank.
- Thus, Z=XA*, where A*=selected eigenvectors (less in numbers compared to the original dimensions)

References

- Green, P.E., and Carroll, J.D., (1976). *Mathematical Tools for Applied Multivariate Analysis*. New York, USA: Academic Press.
- Jackson, J.E., (1991). A User's Guide To Principal Components. John Wiley and Sons. USA.

Authors Information

Credit to the authors:

Process Monitoring