

Process Monitoring

by Mohd Yusri Mohd Yunus yusri@ump.edu.my

Process Monitoring

Communitising Technology

Chapter 3a Principal Component Analysis

Process Monitoring

Communitising Technology

Chapter Description

- Aims
 - Understand the basic principles of multivariate techniques.
- Expected Outcomes
 - Comprehensively explain in writing as well as solve mathematically the principles of multivariate analysis based on complex monitoring problem of MSPM framework.
- Other related Information

Subtopics

3.6 The Basic Structure of Matrix3.7 Eigenstructure

3.6 The Basic Structure of Matrix

- Multiple sets of vector transformations (matrix):
 - $-\mathbf{X}^* = \mathbf{X}\mathbf{A}$

where, $\mathbf{X} = \text{original}$

A = matrix transformation

- Composite transformations:
 - Successive matrix transformations, eg A = TS.
 - Main assumption: ${\bf T}$ and ${\bf S}$ are post-multiplying ${\bf X}$
 - Main mechanism: if ${\bf T}$ is the matrix of one linear transformation, then ${\bf S}$ is the pre-image matrix.

3.6 The Basic Structure of Matrix

According to Green and Carroll, (1976):

"Any non-singular matrix (determinant $\neq 0$) transformation with real-valued entries can be uniquely decomposed into the triplet matrix product of either:

- a) A rotation, followed by a stretch, followed by another rotation
- b) A rotation, followed by a reflection, followed by a stretch, followed by another rotation".

$$\mathbf{A} = \mathbf{P} \Delta \mathbf{Q}'$$

Original Coordinate, X

Rotation, **XP**

Stretch, **XPΔ**

Rotation (improper), **ΧΡΔV**

3.7 Eigenstructure

- Eigenvectors = invariant vectors, in which, those vectors that map into themselves or multiples of themselves under a given transformation map, A
- Eigenvalues (characteristic roots) = a scalar (scale) corresponds to that particular eigenvectors.

3.7 Eigenstructure

 In order to find λ and x, it is necessary to solve the characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

• Let
$$\mathbf{A} = \begin{bmatrix} -3 & 5 \\ 4 & -2 \end{bmatrix}$$
, determine the corresponding eigenvectors as well as eigenvalues for \mathbf{A} !

3.7 Eigenstructure

How would **A** behave if one chose the two eigenvectors as the new basis vectors?

 If U is a set of basis vectors of the transformation matrix A, then the original transformation A behaves as a stretch (or a stretch and reflection) relative to this special basis of eigenvectors:

$\mathbf{D} = \mathbf{U}^{-1}\mathbf{A}\mathbf{U}$

where, \mathbf{D} = diagonal matrix whose entries are the eigenvalues of \mathbf{A} .

U = eigenvector matrix of A.

References

- Green, P.E., and Carroll, J.D., (1976). *Mathematical Tools for Applied Multivariate Analysis*. New York, USA: Academic Press.
- Jackson, J.E., (1991). A User's Guide To Principal Components. John Wiley and Sons. USA.

Authors Information

Credit to the authors:

Process Monitoring

Communitising Technology