

Process Monitoring

by Mohd Yusri Mohd Yunus yusri@ump.edu.my

Process Monitoring

Communitising Technology

Chapter 2 Statistical Process Control

Process Monitoring

Communitising Technology

Chapter Description

- Aims
 - Analyze process performance using the SPC methodology.
- Expected Outcomes
 - Apply as well as analyze the univariate monitoring performance based on the progression of the means and range charts of SPC framework.
- Other related Information

Subtopics

2.1 Process Variations2.2 Control Charts

- The general <u>objectives/benefits</u> of process monitoring are:
- **1. Routine Monitoring**. Ensure that process variables are within the specified limits.
- **2. Detection and Diagnosis**. Detect abnormal process operation and diagnose the root cause.
- **3. Preventive Monitoring**. Detect abnormal situations early enough so that corrective action can be taken before the process is seriously upset.

The aim of descriptive statistics: <u>summarization of</u> <u>process data</u>

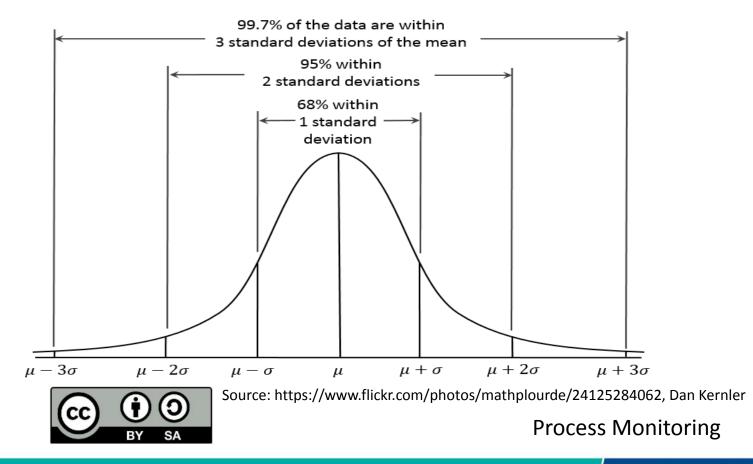
<u>Central tendency</u> (magnitude of deviation from the targeted value)

Mode, median or mean (average)

Variability

Range: Largest – smallest.

Sample variance


- In statistical process control, an important distinction is made between **normal variation** and **abnormal variation**.
- Normal variation is caused by the cumulative effects of a number of largely unavoidable phenomena such as electrical measurement noise, turbulence, and random fluctuations in feedstock or catalyst preparation.
- Abnormal variation (fault operation) is referred to *special cause* or an *assignable cause* such as disturbances, equipment degradation, upsets in process condition, changing in operating modes, signal/communication failure.

- In statistical process control, an important distinction is made between **normal variation** and **abnormal variation**.
- Normal variation is caused by the cumulative effects of a number of largely unavoidable phenomena such as electrical measurement noise, turbulence, and random fluctuations in feedstock or catalyst preparation.
- Abnormal variation (fault operation) is referred to *special cause* or an *assignable cause* such as disturbances, equipment degradation, upsets in process condition, changing in operating modes, signal/communication failure.

Normal Distribution

In statistical process control, *Control Charts* (or *Quality Control Charts*) are used to determine whether the process operation is normal or not.

This type of control chart is often referred to as a Shewhart Chart, in honor of the pioneering statistician, Walter Shewhart, who first developed it in the 1920s.

- For variables that have continuous dimensions
 Weight, speed, length, strength, etc.
- ☑ x-charts are to control the central tendency of the process
- ☑ R-charts are to control the dispersion of the process
- ☑ These two charts must be used together

Development Procedures

- 1. Take representative sample from output of a process over a long period of time, e.g. 10 units every hour (k) for 24 hours (n).
- 2. Compute means and ranges for the variables and calculate the control limits
- 3. Draw control limits on the control chart
- 4. Plot a chart for the means and another for the mean of ranges on the control chart
- 5. Determine state of process (in or out of control)
- 6. Investigate possible reasons for out of control events and take corrective action
- 7. Continue sampling of process output and reset the control limits when necessary.

For \overline{x} -Charts when we know σ

Upper control limit (UCL) = $\overline{x} + z\sigma_x$

Lower control limit (LCL) = $\overline{x} - z\sigma_x$

where

- $\overline{\mathbf{x}}$ = mean of the sample means or a target value set for the process
- z = number of normal standard deviations
- σ_x = standard deviation of the sample means
 - = σ**/**/
- σ = population standard deviation
 - I = sub-group size

Where typically, z = 3.

For \overline{x} -Charts when we know σ

Upper control limit (UCL) = $\overline{x} + z\sigma_x$

Lower control limit (LCL) = $\overline{x} - z\sigma_x$

where

- $\overline{\mathbf{x}}$ = mean of the sample means or a target value set for the process
- z = number of normal standard deviations
- σ_x = standard deviation of the sample means
 - = σ**/**/
- σ = population standard deviation
 - I = sub-group size

Where typically, z = 3.

For \overline{x} -Charts when we don't know σ

Upper control limit (UCL) = $\overline{\overline{x}} + A_2 \overline{\overline{R}}$ Lower control limit (LCL) = $\overline{\overline{x}} - A_2 \overline{\overline{R}}$

where

- \overline{R} = average range of the samples
- A₂ = control chart factor found in Table 1
- $\frac{4}{x}$ = mean of the sample means

Subgroup Size k	Mean Factor A ₂	Upper Range D ₄	Lower Range D ₃
2	1.880	3.268	0
3	1.023	2.574	0
4	.729	2.282	0
5	.577	2.115	0
6	.483	2.004	0
7	.419	1.924	0.076
8	.373	1.864	0.136
9	.337	1.816	0.184
10	.308	1.777	0.223
12	.266	1.716	0.284

Table 1

For R-Charts

Upper control limit (UCL_R) =
$$D_4 \overline{\overline{R}}$$

Lower control limit (LCL_R) = $D_3 \overline{\overline{R}}$

where

- $\overline{\overline{R}}$ = average range of the samples
- D_3 and D_4 = control chart factors from Table 1

References

- <u>http://www.statit.com/statitcustomqc/StatitCustomQ</u>
 <u>C_Overview.pdf</u>
- <u>https://www.aidt.edu/course_documents/Manufacturi</u> ng_Skills/SPC/Intro_to_SPC.pdf

Authors Information

Credit to the authors:

Process Monitoring

Communitising Technology