

Process Monitoring

by Mohd Yusri Mohd Yunus yusri@ump.edu.my

Process Monitoring

Communitising Technology

Chapter 1 Introduction To Process Monitoring

Process Monitoring

Communitising Technology

Chapter Description

- Aims
 - Define the conceptual background of process monitoring.
- Expected Outcomes
 - Critically discuss the essentials and benefits of applying process monitoring system for ensuring smooth as well as safe industrial operability.
- Other related Information

Subtopics

- **1.3 Statistical Fundamentals**
- **1.4 Monitoring Phases**

- Statistics: characterizing/summarizing, analysis and interpretation on some specific phenomena of interest to us.
- Population: a set of collection of all possible observations of some specific characteristics.
- Two generic categories of statistical analysis:
 - Finite -> to conduct analyses at a particular time/existing situation.
 - Conceptual -> to examine the behaviors of some measurable phenomenon as time elapses.

- Finite statistical analysis
 - Two approaches -> study on elements.

-> subsets (samples).

- Samples -> drawing conclusions from a set of samples about the population.
- The goal -> characterize the existing population as exactly as possible based on the given amount of information obtained.

- Conceptual statistical analysis ...continue
 - Objectives:
 - 1. Understanding of the past behavior (taken sequentially over time).
 - 2. To predict how the process is likely to perform in the future based on knowledge derived from the past data.
 - Advantages:
 - 1. Reveal the underlying cause.
 - 2. Experiment new approaches as to assess and improve the process.

- Conceptual statistical analysis
 - Focusing on studying the behavior of a process over time
 - -> Time-series study.
 - -> Analytical study.
 - Considering on-going process (past + future).
 - Associated processes as a conceptual subject rather than established.
 - Involve observations that might occur from performing a particular operation in a particular way.

1.4 Monitoring Phases

- Two phases of building a monitoring application
 - Phase I: model development.
 - To gain an understanding of the process and <u>to establish a</u> <u>statistical benchmark</u> for the likely future process outcomes
 -> normal operating condition (NOC) data.
 - Phase II: fault detection operation.
 - Observing the process in real time <u>by comparing the new</u> process data with the pre-specified model that established during the first phase -> normal (nothing changes) /abnormal (there are fundamental changes which require intervention)!

1.4 Monitoring Phases

• **Phase I:** *T*² and SPE progressions.

1.4 Monitoring Phases

• **Phase II:** *T*² and SPE progressions.

References

• Mason, R.L., and Young, J.C., (2002). Multivariate Statistical Process Control with Industrial Applications. USA: ASA-SIAM.

 MacGregor, J. F., and Kourti, T. (1995). Statistical Process Control of Multivariate Processes. Control Engineering Practice, 3, 403 – 414.

Authors Information

Credit to the authors:

Process Monitoring

Communitising Technology