

Membrane Technology

by
Mazrul Nizam Bin Abu Seman
mazrul@ump.edu.my

Membrane Technology by Mazrul

Chapter 6 Membrane Characterization

Chapter Description

- Aims
 - Understand membrane's characterization including flux, permeability, rejection and calculation of membrane module
- Expected Outcomes
 - Understand membrane's characterization in general.
- Other related Information

Subtopics

- 6.1 Flux and membrane permeability
- 6.2 Calculation of number of module

• Example 1:

Data obtained from one experiment using pure water is shown in Table 1. Calculate the flux (L/m².h) and permeability (L/m².h.bar) from the data. What type of membrane for this case? Please justify.

Sample collect at constant

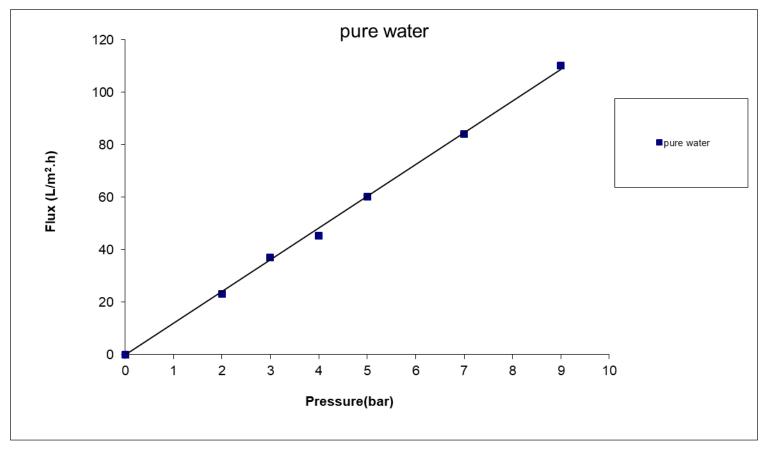
volume, V=

25 mL

Effective membrane

diameter, d=

4 cm


Table 1

Pin(bar)	Pout(bar)	time
0	0	0
2	2.1	51min 29s
3	3.1	32min 6s
4	4.1	26min 17s
5	5.1	19min 46s
7	7.1	14min 9s
9	9.2	10min 48s

Pin(bar)	Pout(bar)	t(h)	Flux(L/m2.h)
0	0	0	0
2	2.1	0.8581	23.12232821
3	3.1	0.535	37.08648568
4	4.1	0.4381	45.2893628
5	5.1	0.3294	60.23457754
7	7.1	0.2358	84.14448618
9	9.2	0.18	110.2292769

Membrane Technology by Mazrul

6.2 Calculation Number of Module

• An UF flat sheet membrane has a water permeability of Lp= 50 L/m².h.bar. The effective size of the flat sheet membrane is 0.5 m x 0.2 m in rectangle module. If the system is run at 5 bar and 25 °C and protein as a feed, how many number of modules are required in order to achieve permeate flow rate of 3 m³/day.

References

- Mulder, M. (2000) Basic Principles of Membrane Technology, second ed., Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Baker, R.W. (2000) Membrane Technology and Applications.
 New York, Mc Graw-Hill.

Authors Information

Credit to the authors:
Dr Mazrul Nizam Abu Seman, Dr Syed
Mohd Saufi Tuan Chik, Dr Rosmawati
Naim, Dr Sunarti Abdul Rahman

Membrane Technology by Mazrul