Universiti	SUBJECT: Biochemistry			MARKS:	
Malaysia	CODE: BSB1113	TOPIC: Lipid, Nucleic Acid & Amino Acid Metabolisms			/10
FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY	ASSESSMENT: Quiz 4	NO: 4	DUE/DURATION: 30 min		/10
NAME:		S	STUDENT ID:	SECTION:	

This is an extended matching type of question on various biochemical pathways or processes (**Table 1**). Select the most appropriate answer from those listed in the table and fill the corresponding **LETTER** in the blank space given. Each choice can be used more than once.

Table 1: Various Biochemical Pathways

A	de novo pyrimidine synthesis		Electron transport chain	
С	de novo purine synthesis		Gluconeogenesis	
Е	Salvage pathway		Catabolism of pyrimidine	
G	Catabolism of purine		Fatty acid synthesis	
I	β oxidation		Ketogenesis	
K	Glycogenolysis		ά- Oxidation	
M	Anabolism of Amino Acid	N	Pentose phosphate pathway	
О	Catabolism of Amino Acid	P	Urea cycle	

1.	is a pathway that removes excess of ammonia from the body.
2.	The α-ketoglutarate, oxaloacetate, and pyruvate type of ketoacids can be useful in through the addition of an amino group to them by transamination reaction.
3.	In the amino acid firstly will lose its α -amino group by transamination to an α -keto acid.
4.	In, 5-phosphoribosyl-1-pyrophosphate (PRPP) is important to be attached from the beginning in the steps to form an ATP.

SUBJECT: Biochemistry CODE: BSB1113 TOPIC: Lipid, Nucleic Acid & Amino Acid Metabolisms			MARKS:	/10
ASSESSMENT: NO: Quiz 4		DUE/DURATION: 30 min		/10

	TECHNOLOGY					
NAME			S	TUDENT ID:	SECTION:	
5.	leads ı	ıltimately to β-ala	nine or β	-aminoisobuty	rate and NH ₃ and CO ₂ .	
6.	Unlike the <i>de novo</i> a ribose, activated				a recycled base is attac aosphate (PRPP).	ched to
7.	The committed step	p ini	s that inv	olving Acetyl-	CoA Carboxylase.	
8.	In, two the carboxyl end.	vo carbons at a ti	me are cl	eaved from ac	yl-CoA molecules, star	ting at
9.	In pa beyond Δ^9 however			as found canno	ot incorporate a double	e bond
10.	An odd chain fatty		an lead to	o propionate a	the end which in turn	enters