P Universiti	SUBJECT: Biochemistry			MARKS:	
FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY	CODE: BSB1113	TOPIC: Lipid & Nucleic Acid			/0
	ASSESSMENT: Quiz 4	NO: 4	DUE/DURATION: 20 min	/ 0	/ 0
NAME:		STUDENT ID:		SECTION:	

This is an extended matching type of question on various biochemical pathways or processes (Table 1). Select the most appropriate answer from those listed in the table and fill the corresponding **LETTER** in the blank space given. Each choice can be used more than once.

- 1. _____ is a pathway that yields both NADH and FADH₂ but no ATP/GTP.
- In ______ acetyl CoA firstly required to be shuttled to the cytoplasm as a precursor for this pathway.
- 3. The rate limiting enzyme of ______ is Acetyl-CoA Carboxylase and not Fatty Acid Synthase.
- 4. In _____, a base is recycled and attached to a ribose, activated in the form of 5-phosphoribosyl-1-pyrophosphate (PRPP).
- 5. Xanthine oxidase is an enzyme important in _____.
- 6. In ______, the ring is synthesized first and only then it is attached to ribose to form a nucleotide.
- Due to ______ the brain can be alternatively be provided with energy fuel as and when glucose is low in blood.
- 8. In the event blood glucose levels drops below the steady state, glucose obtained due to ______ in liver can be secreted into blood to elevate its level back to normal again.

	SUBJECT: Biochemistry			MARKS:	
FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY	CODE: BSB1113	TOPIC: Lipid & Nucleic Acid			/0
	ASSESSMENT: Quiz 4	NO: 4	DUE/DURATION: 20 min		/ 8
NAME:	•	STUDENT ID:			

Table 1: Various Biochemical Pathways

Α	<i>de novo</i> pyrimidine synthesis		Electron transport chain	
C	C <i>de novo</i> purine synthesis		Gluconeogenesis	
Е	E Salvage pathway		Catabolism of pyrimidine	
G	G Catabolism of purine		Fatty acid synthesis	
Ι	β oxidation	J	Ketogenesis	
K	Glycogenolysis	L	Malate aspartate shuttle	
М	Cholesterol synthesis	N	Pentose phosphate pathway	
0	Alcohol metabolism	Р	Urea cycle	