

BIOCHEMISTRY

Electron Transport Chain and Oxidative Phosphorylation

by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology email: jayavejayan@ump.edu.my

Chapter Description

• Overview

This pathway responsible in oxidation of reduced coenzymes to generate ATP.

Expected Outcomes

You should be able to understand on the accepted chemiosmotic theory, importance of ATP synthase, inhibition of complexes within ETC, movement of substrates between cytoplasm and mitochondria.

• Other related Information

Some relevant questions been provided for improving your understanding of the topic. You are expected to search for external sources for information to adequately answer the questions. All pictures and figures within this chapter categorized as creative commons for the purpose of education only.

Electron Transport Chain and Oxidative Phosphorylation by Jaya Vejayan

http://ocw.ump.edu.my/course/view.php?id=485

Electron transport and oxidative phosphorylation

occur within the inner mitochondrial membrane

What are the electron carriers in the electron transport chain (ETC)?

- NADH and FADH₂ carry electrons from catabolic pathways to ETC
- Within ETC, other electron carriers transport electrons between and within complexes

The Chemiosmotic model

What is ATP synthase?

- ATP synthesis is catalysed by ATP synthase (complex V)
- F_o component (stalk)
 - acts as a H⁺ pore
 - sensitive to **oligomycin**
- F₁ component (knob)
 -catalyzes ATP synthesis

How do ATP synthase and ETC interact?

- Electron transfer is **coupled** to ATP synthesis
- In isolated mitochondria preparations

How many ATPs can glucose provide?

- From Aerobic Glycolysis
 2 ATP
 - 2 NADH (=6 ATP)
- 2 x Pyruvate to Acetyl-CoA
 2 NADH (=6 ATP)
- 2 x Citric Acid Cycle
 2 GTP (=2 ATP)
 6 NADH (=18 ATP)
 2 FADH₂ (=4 ATP)

(complete oxidation)

What limits the rate of respiration?

Respiration is a catabolic process

uses O₂ to form ATP

- Conditions limiting respiration rate are:
 - 1. availability of **ADP and substrate**
 - 2. availability of substrate only
 - 3. capacity of respiratory chain itself
 - 4. availability of **ADP** only
 - 5. availability of O₂ only

Ratio b/n ADP/ATP in the cell

Ratio of ADP/ATP is important in regulating respiration

Electron Transport Chain (ETC)

- carrier proteins found in mitochondria (and chloroplasts)
- Physically arranged in an ordered series
 - Starts with high-energy electrons and low-energy ADP
 - Pass electrons from one carrier to another
 - Ends with low-energy electrons and high-energy ATP

What experimental evidence supports Universiti the chemiosmotic theory?

- Acidification outside the mitochondria
- Disruption of membrane
- Artificial gradients
- Uncouplers

O₂ use ATP prodⁿ

Thermogenin is a natural uncoupling protein

Adenine nucleotide (ADP/ATP) transporter is susceptible to atractyloside

NADH from cytosol to matrix

Energy Metabolism - Summary

- Glycolysis occurs in the cytoplasm and flux is regulated by cellular energy indicators
- Fate of pyruvate under aerobic & anaerobic conditions
- The citric acid cycle occurs in the mitochondria and flux depends on energy status of the cell
- Acetyl-CoA from pyruvate via glycolysis or fatty acids via βoxidation
- The anaplerotic reactions replenish the intermediates of the cycle
- Reducing equivalents from catabolic p'ways enter the electron transport chain in inner mitochondrial membrane
- Oxidative phosphorylation is coupled to O₂ use and produces many ATPs
- Poisons can interfere with electron transport or other aspects of oxidative phosphorylation

References:

Title/URL	Author	Publisher	Year
Biochemistry (6th edition)	Campbell, M.K. and Farre	Thompson Brooks/C	
Biochemistry.2010	Garret, R.H., Grisham, C.	Thompson Brooks	2007
Biochemistry	Hames,D	USA: Taylor and Fran	-
Color Atlas of Biochemistry	Koolman, J., Roehm, K.F	Thieme Stuttgart	2005
Biochemistry demystified	Walker, S.	New York, USA; McGr	2008
Biochemistry, 7th Edition	Stryer	W.H Freeman and Co	2010
Biochemistry, 4th Edition	Donald Voet and Judith C	Wiley and Co	2011
Google with keyword of biochemistr	Various Online Biochemi	various	
Concepts in Biochemistry, 2nd ed	Boyer, R	Brooks/Cole/Thomsc	2002

