

General Chemistry

Thermochemistry II

Author: Aini Norhidayah Mohamed <u>ainin@ump.edu.my</u> Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang

Thermochemistry by Aini Norhidayah http://ocw.ump.edu.my/course/view.php?id=479

Chapter Description

- Expected Outcome:
- At the end of the lecture, the students should be able to understand and solve the problems regarding on the Lattice Energy Born Haber Cycle & Hess Law.

<u>References:</u>

- Stephen B. Barone. Introduction to general chemistry. Blackwell Science.
- 2) James E. Bradry General Chemistry: Principles & Structure. John Wiley.

Content

- Lattice Energy
- Born Haber Cycle
- Hess Law

Lattice energy formation is the energy released when one mole of a solid (ionic compound) is formed from its gaseous ions.

$$Na^{+}_{(g)} + Cl^{-}_{(g)} \rightarrow NaCl_{(s)}$$
 $\Delta H_{lattice} = -771 \text{ kJ}$
(lattice formation)

Lattice energy dissociation is the energy required to completely separate one mole of a solid (ionic compound) into its gaseous ions

$$NaCl_{(s)} \rightarrow Na^{+}_{(g)} + Cl^{-}_{(g)}$$
 $\Delta H_{lattice} = +771 \text{ kJ}$
(lattice

Ο

The magnitude of lattice energy increases as:-

- The ionic charges increase ions attract each other more strongly.
- The ionic radii decrease they get closer together.

Electron Affinity

The amount of energy change to added 1 mole of

electron into 1 mole of gaseous atoms or ions in their

ground state.

Atom(g) + $e^- \rightarrow ion^-(g)$ $\Delta E = EA_1 = -ve$

These reactions usually <u>exothermic (release energy)</u>

because when an electron is added to a neutral atom, it

will experience an attraction of nucleus and release an

amount of energy.

Electron Affinity

 However, affinity does not always release energy. In some cases, affinity requires energy.
 Example: Formation of oxide, O²⁻;

$$O^{2-} \longrightarrow O^{-}(g) = EA_{1} = -ve$$

$$O^{2-} \longrightarrow O^{-}(g) = EA_{2} = +ve$$

Thermochemistry by Aini Norhidayah http://ocw.ump.edu.my/course/view.php?id=479

Electron Affinity

First Ionisation Energy

 Is the minimum energy required to remove one mole of electron from one mole of neutral gaseous atom in its ground state

$$X_{(g)} \longrightarrow X^{+}_{(g)} + e^{-}$$

Second Ionisation Energy

X+

- Is the energy required to remove one mole of electron from one mole of gaseous positive ion in its ground state

$$g) \longrightarrow X^{2+}(g) + e^{-}$$

$$for the constraints for the constraints$$

Dissolution process of ionic solid

- Dissolution is the process by which a solid or liquid forms a solution in a solvent.
- Occur when an ionic solid dissolve in water
- Water molecules are polar

$$NaCl_{(s)} \longrightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

- Most ionic crystals are soluble in water
- Ions in the solid crystal can be separated from each other and converted to the gaseous ions ($\Delta H_{lattice}$)
- The attraction forces between gaseous ions and polar water molecules cause the ions to be surrounded by water molecules $(\Delta H_{\rm hyd})$

$$\Delta H_{soln} = \Delta H_{lattice dissociation} +$$

hyd

Thermochemistry ১০০ by Aini Norhidaya

by Aini Norhidayah <u>http://ocw.ump.edu.my/course/view.php?id=479</u>

Energy cycle for ionic compounds

Connects enthalpy of formation with lattice energy

Born haber cycle diagram

Lattice energy dissociation is the energy required to completely separate one mole of a solid (ionic compound) into its gaseous ions

$$NaCl_{(s)} \rightarrow Na^{+}_{(g)} + Cl^{-}_{(g)} \qquad \Delta H_{lattice} = +771 \text{ kJ}$$

(lattice dissociation)

Ο

The magnitude of lattice energy increases as:-

Ithe ionic charges increase

refine ions attract each other more strongly

the ionic radii decrease
 they get closer together

<u>E.g.</u>

 ΔH for MgO is more negative than ΔH for Na_2O because Mg^2+ is smaller in size and has bigger charge than Na^+

 $\therefore \Delta H^{o}_{lattice} (MgO) > \Delta H^{o}_{lattice} (Na_{2}O)$

 However, affinity does not always release energy. In some cases, affinity requires energy.
 Example: Formation of oxide, O²⁻;

$$O^{2-} \longrightarrow O^{-}(g) = EA_{1} = -ve$$

$$O^{2-} \longrightarrow O^{-}(g) = EA_{2} = +ve$$

Thermochemistry by Aini Norhidayah http://ocw.ump.edu.my/course/view.php?id=479

First Ionisation Energy

 Is the minimum energy required to remove one mole of electron from one mole of neutral gaseous atom in its ground state

$$X_{(g)} \longrightarrow X^{+}_{(g)} + e^{-}$$

Second Ionisation Energy

X+_(g)

- Is the energy required to remove one mole of electron from one mole of gaseous positive ion in its ground state

Dissolution process of ionic solid

- Dissolution is the process by which a solid or liquid forms a solution in a solvent.
- Occur when an ionic solid dissolve in water
- Water molecules are polar

$$NaCl_{(s)} \longrightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

- Most ionic crystals are soluble in water
- Ions in the solid crystal can be separated from each other and converted to the gaseous ions ($\Delta H_{lattice}$)
- The attraction forces between gaseous ions and polar water molecules cause the ions to be surrounded by water molecules $(\Delta H_{\rm hyd})$

$$\Delta H_{soln} = \Delta H_{lattice dissociation} + \Delta H_{hyd}$$

Born haber Cycle

Energy cycle for ionic compounds.

Connects enthalpy of formation with lattice energy.

Thermochemistry by Aini Norhidayah http://ocw.ump.edu.my/course/view.php?id=479

Born Haber energy cycle diagram

energy Na+(g) + e + Cl(g)Electron Affinity of Cl Ionisation Energy of Na Na+(g) $+ Cl^{-}(g)$ + Cl(g)Na(g) ΔH_{aCl} Na(g) + $\frac{1}{2}$ Cl₂(g) +ve Lattice energy $\Delta {\rm H}_{\rm aNa}$ + $\frac{1}{2}$ Cl₂(g) Na(s) E=0 $\Delta H_{f \; \text{NaCl}}$ Thermochemistry -ve NaCl(s) by Aini Norhidayah 6 CC http://ocw.ump.edu.my/course/view.php?id=479

From Hess's Law:

$$\Delta H_{f \text{ NaCl}} = \Delta H_{a\text{Na}} + \Delta H_{a\text{Cl}} + \text{IE}_{\text{Na}} +$$

EA_{CI} + Lattice Energy

Author Information

Aini Hidayah Mohamed is a lecturer from Faculty of Industrial Sciences & Technology Industry, Universiti Malaysia Pahang, Malaysia. She is also a chemist who is expert in general chemistry, industrial chemistry and natural product.

Thermochemistry by Aini Norhidayah http://ocw.ump.edu.my/course/view.php?id=479