

General Chemistry

Periodic Table

Author: Aini Norhidayah Mohamed <u>ainin@ump.edu.my</u> Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang

Periodic Table by Aini Norhidayah http://ocw.ump.edu.my/course/view.php?id=479

Communitising Technology

Chapter Description

Expected Outcome:

At the end of the lecture, the students should be able to understand and solve the problems regarding on the periodic table, representative and transition elements.

- <u>Reference:</u>
 - Chemistry for matriculation semester 1, Tan Yin Toon, Sheila Shamuganathan. Companion website.

- Representative elements (Group IA-VIIA)
- Transition elements (IB-VIIB)

Periodic table

• Picture source: <u>http://s3-ap-southeast-</u>

1.amazonaws.com/subscriber.images/chemistry/2016/04/12130832/Periodic-Table1.png

Periodic table

• Consist of 4 main block, s,p,d,f

• Picture source: <u>http://study.com/cimages/multimages/16/800px-periodic_table_structure.svg.png</u>

Periodic table number

• The groups are numbered from 1 to 18

Picture source: <u>http://scienceprojectideasforkids.com/wp-content/uploads/2011/11/Periodic-Table-symbols-atomic-numbers.jpg</u>
Periodic Table

• Elements in the same group have the same number of valence electrons.

Elements	Li (Lithium)	AI (Aluminium)	V (Vanadium)
Electronic configuration	1s²2s¹	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²
Valence electron	1	3	5
Group	Group 1	Group 13	Group 5

C	Grou	up 1	: Alk	ali m	netal	S					ſ	Gro	up 1	8 : 1	nert	/nob	le g	ases
	Group 2 : Alkaline earth metals																	
	Group 17 : Halogens																	
		, -															\Box	↓
	1	↓										-					¥	18
1	, H	2		Gr	oup	3-12	2 : Ti	rans	ition	me	tals		13	14	15	16	17	He
2	Li	Be	↓									→	в	C	, N	,0	F	Ne
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI 13	Si 14	P 15	S 16	CI	Ar
4	К 19	Ca	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br	Kr 36
5	Rb 37) Sr 38	Ү 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Те 52	1 53	Xe 54
6	Cs 55	Ba 56	Ģ	Hf 72	Та 73	W 74	Re 75	Os 76	1r 77	Pt 78	Au 79	Hg ®	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 85
7	Fr 87	Ra	回	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Uun	Uuu	Uub		Uuq		Uuh		Uuo
1																		
			La 57	Ce	Pr 59	Nd 60	Pm	Sm 62	Eu	Gd ⊌	Tb 65	Dy 55	Ho 67	Er 	Tm ∞	Yb 70	Lu 71	
			Ac	Th 90	Ра 91	U 92	Np	Pu 94	Am	Cm 96	Bk 97	Cf 98	Es	Fm 100	Md 101	No 102	Lr 103	

<u>9</u>

Period number

• The period are numbered from 1 to 7

Horizontal rows of elements = period = no. of occupied e⁻ shells (n)

Picture source: https://mypchem.wikispaces.com/file/view/PT5.png/241757599/PT5.png

Period number

Elements	Li (Lithium)	AI (Aluminium)	V (Vanadium)		
Electronic configuration	1s ² 2s ¹	1s ² 2s ² 2p ⁶ <mark>3</mark> s ² 3p ¹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²		
Higher Principal Quantum Number	2	3	4		
Period	Period 2	Period 3	Period 4		

Period number

Elements	Li (Lithium)	AI (Aluminium)	V (Vanadium)
Electronic configuration	1s² <mark>2</mark> s¹	1s² 2s² 2pª <mark>3</mark> s² <mark>3</mark> p¹	1s² 2s² 2p [®] 3s² 3p [®] 3d³ <mark>4</mark> s²
Higher Principal Quantum Number	2	3	4
Period	Period 2	Period 3	Period 4

d block- transition element

- Also called transition elements
- Metals
- No extreme variability

Elements of d-block	Co (Cobalt)	Tc (Technetium)	Au (Gold)
Electronic configuration	1s² 2s² 2p ⁸ 3s² 3p ^e 3d ⁷ 4s²	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰ 4s² 4p ⁶ 4d ⁶ 5s ¹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ⁶ 4f ¹⁴ 5d ¹⁰ 6s ¹
Outermost electrons	2 electrons	1 electron	1 electron
Valence electrons	9 electrons	7 electrons	11 electrons
Inner electrons (electrons in inner shell)	25 electrons	42 electrons	78 electrons

s block

- metals
- Valence electron is maximum of 2 electron

	s
Number of valence electrons	1-2 electron
Orbitals of valence electrons	s-orbitals
Configuration of valence electrons	ns¹ to ns²
Group	Group 1 & 2
Example	₁₁ Na: 1s² 2s² 2p ⁸ 3s¹ ₂₀ Ca: 1s² 2s² 2p ⁸ 3s² 3p ⁸ 4s²

p block

• Maximum of 6 electron in the orbital

	р
Number of	3-8 electrons
valence electrons	
Orbitals of	s and p- orbitals
electrons	ns² np¹
Configuration of valence electrons	ns² np ⁸
_	Group 13 – 18
Group	13AI: 1s² 2s² 2p ⁸ 3s²
Example	3p1 "Si: 1s2 2s2 2p6 3s2 3p2

fblock

• Maximum of 6 electron in the orbital

Metal, non metal, metalloid

	Metal Metalloid Nonmet				tal												
н	н											He					
Li	Be	e											С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe
Cs	Ва	La-Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac-Lr															

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Picture source: <u>http://www.nemoquiz.com/wp-content/uploads/2014/07/Periodic-Table-MetalNonmetalSmall.png</u>
Periodic Table

Position of an element

- The position of an element in the periodic table can be deduced from its outermost electronic configuration.

Atomic radius

- Determined by
- 1- effective nuclear charge- Zeff- positive charge felt by an electron

Z = no. of proton S = no. of electrons filled at the inner orbital/ number of inner or core electrons

 2- screening effect- aka shielding effectcaused by mutual repulsion between inner and outer shell electron

Across a period

- number of protons increase

(more protons are added to the nucleus, hence nuclear charge also increase)

- Zeff increases
- outer electrons are pulled closer to nucleus.
- nucleus-electron attraction increases.
- atomic radius becomes smaller.
- atomic radius generally decrease across a period from left to right.

Crossing down group

- proton number increase and nuclear charge also increase.
- outer electrons enter new energy levels.
- principal quantum number, n of the valence electrons increase.
- more inner electrons.
- inner electrons shield the outer electrons effectively. Screening effect increase.
- Zeff is not significant.
- atomic radius generally increase in a group from top to bottom.

Atomic and ionic radius

Positive ions (cations)

- smaller than their neutral atoms.
- when electrons are removed from an atom, repulsion between electrons decrease.
- number of proton remain, nuclear charge remain the same.
- remaining electrons are pulled closer towards the nucleus.
- electron cloud shrink.
- cation is smaller than its atom.

COMPARISON OF ATOMIC RADIUS AND

ITS IONIC RADIUS

Negative ions (anions)

- always larger than their neutral atoms.
- has more electrons as it gains electron during formation.
- when electrons are added to an atom, repulsion between electrons increase.
- outer orbital expands, nuclear charge remain the same.
- electrons cloud enlarge.
- anions is larger than its atom.

Isoelectronic

Group of atoms or ions with same electronic configuration.

- Across the period, sizes of cations and anions decrease due to the increase of Zeff.
- Ionic radii of Na⁺ > Mg²⁺ > Al³⁺ > Si⁴⁺

They are isoelectronic (10 e) because their electronic configurations are the same : $1s^2 2s^2 2p^6$

lons	Electron Configuration	Ionic Radii	
Na⁺	1s ² 2s ² 2p ⁶ or Ne	95	
Mg ²⁺	1s ² 2s ² 2p ⁶ or Ne	65	3ra period
Al ³⁺	1s ² 2s ² 2p ⁶ or Ne	50	
N ³⁻	1s ² 2s ² 2p ⁶ or Ne	171	Ond
O ²⁻	1s ² 2s ² 2p ⁶ or Ne	140	period
F [.]	1s ² 2s ² 2p ⁶ or Ne	136	

NC

Na+, Mg^{2+,} Al³⁺, F⁻, O²⁻, and N³⁻ tion Nornidayan Ne SA

http://ocw.ump.edu.my/course/view.php?id=479

Ionic radii, period 2

Across the period 2, -

- Ionic radii of cations decrease from Li⁺ to B³⁺
- Ionic radii of anions decrease from N³⁻ to F⁻
- But the ionic radii increase from B³⁺ to N³⁻
- The ionic radius decreases for metals forming cations, as the metals lose their outer electron orbitals. Thus the Zeff increases resulting the ionic radius to decrease.
- The ionic radius increases for nonmetals forming anions, as the effective nuclear charge decreases due to the number of electrons exceeding the number of protons.

Ionic radii, period 3

Across the period 3, -

- Ionic radii of cations decrease from Na⁺ to Si⁴⁺
- Ionic radii of anions decrease from P3- to CI-
- But the ionic radii increase from Si⁴⁺ to P³⁻

The ionic radius decreases for metals forming cations, as the metals lose their outer electron orbitals. Thus the Zeff increases and causes the ionic radius to decrease.

- The ionic radius increases for nonmetals forming anions, as the effective nuclear charge decreases due to the number of electrons exceeding the number of protons.

- The increase in ionic size from Si⁴⁺ ($1s^2 2s^2 2p^6$) to P³⁻ ($1s^2 2s^2 2p^6 3s^2 3p^6$)

is due to the presence of an additional electron shell.

- -This causes an increase in screening effect.
- As a result, the ionic radius increases.

Cations

• The ionic radius decrease as follows: Na⁺>Mg²⁺>Al³⁺>Si⁴⁺

lons	Electron configuration	No. of Electron	Z _{eff}	lonic radii (pm)
Na⁺	1s ² 2s ² 2p ⁶	10	11-2=+9	95
Mg²+	1s ² 2s ² 2p ⁶	10	12-2=+10	65
Al ³⁺	1s ² 2s ² 2p ⁶	10	13-2=+11	50
Si ⁴⁺	1s ² 2s ² 2p ⁶	10	14-2=+12	41
			Periodic Table	

http://ocw.ump.edu.my/course/view.php?id=479

Anions

 The ionic radius decrease as follows: P^{3->} S^{2->} Cl⁻

lons	Electron configuration	No.of electron	Z _{eff}	lonic radii (pm)
P ³ -	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	18	15-10=+5	212
S ²⁻	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	18	16-10=+6	184
CI-	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	18	17-10=+7	181

Author Information

Aini Hidayah Mohamed is a lecturer from Faculty of Industrial Sciences & Technology Industry, Universiti Malaysia Pahang, Malaysia. She is also a chemist who is expert in general chemistry, industrial chemistry and natural product.

