

General Chemistry

Atomic Structure

Author: Aini Norhidayah Mohamed <u>ainin@ump.edu.my</u> Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang

Chapter Description

Expected Outcome:

At the end of the lecture, the students should be able to understand and solve the problems regarding Atomic model, Quantum mechanical model and electron configuration.

<u>Reference:</u>

1) Martin S. Silberberg. Principles of General Chemistry. McGraw-Hill.

2) Raymond Chang. General Chemistry: The essential concepts. McGraw-Hill.

Contents

- Bohr's Atomic Model
- Electronic configuration
- Quantum Mechanical Model

Bohr's Atomic Model

Bohr's Postulates:

- An electron moves in a circular path (orbit) around the nucleus of an atom, but the electron does not radiate or absorbing any energy
- Energy of an electron is quantised

Bohr's Atomic Model

• Picture source:

http://byjus.com/chemistry/bohrs-atomicmodel-and-its-limitations/

Bohr's Postulate

At ordinary condition the electron is at the ground state (lowest level). If energy is supplied, electron will absorb the energy and promoted from lower energy level-to-a higher level

Bohr's Postulate

Electron at excited states is unstable. It will go back to lower energy level and releases energy in form of light.

ENERGY DIFFERENCE during transition (ΔE)

$$E_{\text{photon}} = \Delta E = E_{\text{f}} - E_{\text{i}}$$
$$E_{f} = -R_{\text{H}} \left(\frac{1}{n_{f}^{2}} \right) \qquad E_{i} = -R_{\text{H}} \left(\frac{1}{n_{i}^{2}} \right)$$

Energy differences between two levels:

$$\Delta E = R_{H} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}} \right)$$
$$= hv$$

Note: i = initial; f = final

Atomic Structure by Aini Norhidayah <u>http://ocw.ump.edu.my/course/view.php?id=479</u>

Communitising Technology

- The amount of energy released is called a photon
- Photon is emitted in the form of radiation with a frequency and wavelength.

$$\Delta E = hv$$

$$v = \frac{c}{\lambda}$$

 $\Delta E = hc$

λ

- λ : wavelength (m)
 - c : speed of light = 3.00×10^8 m/s
 - *h* : planck constant = 6.63×10^{-34} Js

Electron configuration

Shows how electrons are distributed in various atomic orbitals

Representing electronic configuration

Method 1: Orbital diagram

Relative energy of atomic orbital

Pauli Exclusion Principle

No 2 electrons in the same atom can have same quantum numbers

He atom 1 s²

WRONG

WAY

 $(1,0,0,-\frac{1}{2})$ $(1,0,0,-\frac{1}{2})$

 $(1,0,0, +\frac{1}{2})$ $(1,0,0, -\frac{1}{2})$

Hund's Rule

Before any one orbital is doubly occupied, every orbital in a subshell is singly occupied with one electron

All electrons in singly occupied orbitals have the same spin.

Quantum number

Principal quantum number (n)

13

Angular momentum quantum number (?)

Magnetic quantum number (*m*)

electron spin quantum number (s)

Principle of Quantum number

The *value* of *n* determines the *energy* of an orbital thus determining the energy of an electron in that particular orbital

n	1	2	3	4
shell	К	L	Μ	Ν
Orbital size		increase		
Energy				

Angular momentum number

 ℓ = Integer 0 to (n-1)

Indicates the shape and types of orbital

n determine ℓ

EXAMPLE: n = 1 $\ell = 0$ n = 2 $\ell = 0, 1$ n = 3 $\ell = 0, 1, 2$ $\square \square \square \square \square$

Magnetic quantum number

m = integer from – l through 0 to + l Indicates orientation of orbital in the space around the nucleus

ℓ determine *m*

Number of possible *m* values $= 2\ell + 1$

Hierarchical relationship

EXAMPLE:

- n = 2 possible ℓ values = 0, 1
- $\ell = 1$ possible *m* values = -1, 0, +1
- $\ell = 0$ possible *m* values = 0

Electron Spin Quantum Number

s value of : $+\frac{1}{2}$ and $-\frac{1}{2}$

Two possible motions of an electron © clockwise and anti–clockwise

Shape of *s* orbital

Spherical shape with nucleus at the center 2s orbital larger than 1s

Only have 1 orientation $(\ell = 0, m = 0)$

Shape of *p* orbital

- When $\ell = 1$
- Dumbbell shaped
- 3*p*-orbitals p_x , p_y , and p_z .
- Correspond *m* of -1, 0, and +1.
- As *n* increases, the *p*-orbitals get larger.
- All *p*-orbitals have a node at the nucleus.

Shape of *d* orbital

- 4 d orbitals have 4 lobes (perpendicular),
- 1 d orbital has 2 major lobes along z axis and a donut-shaped girdles the center.

When $\ell = 2$

$$m = -2, -1, 0, 1, 2$$

the orbitals are: d_{yz} , d_{xz} , d_{xy} , $d_{x^{2-y^{2}}}$, $d_{z^{2}}$

Author Information

Aini Hidayah Mohamed is a lecturer from Faculty of Industrial Sciences & Technology Industry, Universiti Malaysia Pahang, Malaysia. She is also a chemist who has experiences in general chemistry, industrial chemistry and natural product subject.

