

BSK1133 PHYSICAL CHEMISTRY

CHAPTER 6 CHEMICAL EQUILIBRIUM

PREPARED BY:

DR. YUEN MEI LIAN AND DR. SITI NOOR HIDAYAH MUSTAPHA Faculty of Industrial Sciences & Technology yuenm@ump.edu.my and snhidayah@ump.edu.my

Description

Aims

To discuss the equilibrium state of chemical and physical equilibrium.

- ➤ To express and calculate equilibrium constants for homogeneous equilibria, heterogeneous equilibria and multiple equilibria.
- ➤ To discuss the factors that may affect the position of equilibrium.
- ➢ To learn the Le Châtelier's principle in the prediction of changes.

Description

Expected Outcomes

- ✤ Able to describe the equilibrium state of chemical and physical equilibrium.
- ✤ Able to express and calculate the equilibrium constants.
- ✤ Able to study the factors that may affect the position of an equilibrium.
- ✤ Able to apply the Le Châtelier's principle.

References

- ✓ Atkins, P & Julio, D. P. (2006).Physical Chemistry (8th ed.). New York: Oxford.
- ✓ Chang, R. (2005).Chemistry (8th ed.). New York: McGraw Hill.
- ✓ Atkins, P & Julio, D. P. (2012). Elements of Physical Chemistry (sixth ed.). Freeman, Oxford.
- ✓ Silbey, R. J., Alberty, A. A., & Bawendi, M. G. (2005). Physical Chemistry. New York: John Wiley & Sons
- ✓ Mortimer R. G. (2008) Physical Chemistry, Third Edition , Elsevier Academic press, USA.

Contents

- ✤ 6.1 The Concept of Equilibrium
- ✤ 6.2 Relate the Kinetics in Chemical Equilibrium
- ✤ 6.3 Factors
- Conclusion

6.1 The Concept of Equilibrium

CHAPTER 6 CHEMICAL EQUILIBRIUM BY DR. YUEN MEI LIAN http://ocw.ump.edu.my/course/view.php?id=470

The Concept of Equilibrium and the Equilibrium Constant

I. Introduction

- Chemical equilibrium can be obtained when the rates of the forward and reverse reactions must be equal. In addition, the concentrations of the reactants and products are unchanged. Example: $2NO_2(g) \rightleftharpoons N_2O_4(g)$
- **Physical equilibrium** is referring equilibrium of two phases with the same substance.

Example: $H_2O(l) \rightleftharpoons H_2O(g)$

II. Equilibrium Constant

a) Homogeneous Equilibria – same phase of reacting species.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$
 $K_c = \frac{[NO_2]^2}{[N_2O_4]}$

✓ K_c shows the reacting species (gas) (units = molarity, moles per liter and partial pressure).

✓ Pressure of a gas is to concentration in mol/L of gas (at constant temperature) $\mathbf{P} = (\frac{n}{V})\mathbf{RT}$ $K_p = \frac{P_{NO_2}^2}{P_{NO_2}}$ ✓ P_{NO_2} and $P_{N_2O_4}$ are equilibrium partial pressure (atm). \checkmark K_p shows equilibrium concentration expressed in terms of pressure. \checkmark $K_c \neq K_p$ cause their units of expression are different. Example: $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$ Since $\Delta n = 2 - 2 = 0$, therefore, $K_p = (0.0821T)^{\Delta n} K_c$ $K_p = (0.0821T)^0 K_c$ $K_p = K_c$ (Special Case for this reaction where $K_p = K_c$)

Where $\Delta n = b - a$ (moles of gaseous products – moles of gaseous reactants) Pressures are usually expressed in atm, hence, gas constant *R* is 0.0821 atm L/(K mol).

- b) Heterogeneous Equilibria
- Universiti • Refer to a reversible reaction where **different phases of reactants and** Malaysia PAHANC products that are in.

 $CaCO_{3}(s) \leftrightarrows CaO(s) + CO_{2}(g) \qquad K'_{c} = \frac{[CaO][CO_{2}]}{[CaCO_{3}]}$ K'_{c} is used as symbols to differentiate it from final equilibrium constant at the end.

SPECIAL: "Concentration" (means density) of a solid does not depend on how much of the substance is present.

Example: [CaCO₃] and [CaO] are constant and combine with K'_c to form final equilibrium constant.

 $\frac{[CaCO_3]}{[CaO]}K'_c = Kc = [CO_2] \text{ (new equilibrium constant)}$

In thermodynamic, *concentration* replace with *activity* of pure solid or liquid = 1. Thus,

$$K_c = [CO_2] \text{ or } K_p = P_{CO_2}$$

c) Multiple Equilibria

Example: These equilibria can be split into two steps:

$$H_2A \leftrightarrows HA^- + H^+ \qquad K_1 = rac{[HA^-][H^+]}{[H_2A]}$$

$$HA^{-} \leftrightarrows A^{2-} + H^{+} \qquad K_{2} = \frac{[A^{2-}][H^{+}]}{[HA^{-}]}$$

K₁ and K₂ are examples the equilibrium constants for each step. Next, we can write out the overall reaction equation, which is a sum of these two steps:

$$H_2 A \rightleftharpoons A^{2-} + 2 H^+ \qquad K_c = \frac{[A^{2-}][H^+]^2}{[H_2 A]}$$

 K_c is equal to the product of the equilibrium expressions for the two reaction steps. Thus,

$$K_c = K_1 K_2$$

Iniversit d) The Form of K and the Equilibrium Equation **Condition I** $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $2NO_2(g) \rightleftharpoons N_2O_4(g)$ $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \text{ x } 10^{-3}$ $K_{c}' = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}} = \frac{1}{K_{c}} = \frac{1}{4.63 \times 10^{-3}} = 216$ \circ $K_c K'_c = 1$. (Must specify the equilibrium equation). **Condition II** $\frac{1}{2}N_2O_4(g) \rightleftharpoons NO_2(g)$ $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $K_{c}^{\prime\prime} = \frac{[NO_{2}]}{1}$ $K_c = \frac{[NO_2]^2}{[N_2O_4]}$ $\circ K_c'' = \sqrt{K_c} \quad [N_2 O_4]^{\overline{2}}$, since $K_c = 4.63 \ge 10^{-3}$, Hence, $K_c'' = 0.0680$

SUMMARY

✓
$$K_p = (0.0821T)^{\Delta n} K_c$$

✓ Equilibrium constant (K_p or K_c) is unitless.

6.2 Relate the Kinetics in Chemical Equilibrium

CHAPTER 6 CHEMICAL EQUILIBRIUM BY DR. YUEN MEI LIAN http://ocw.ump.edu.my/course/view.php?id=470

6.2 Relate the Kinetics in Chemical Equilibrium

CHAPTER 6 CHEMICAL EQUILIBRIUM BY DR. YUEN MEI LIAN http://ocw.ump.edu.my/course/view.php?id=470

Le Chatelier's Principle

- ➤ It states that if external stress is introduced to an equilibrium system, the system will adjust to offset it and achieve a new equilibrium position.
- ➢ It helps in prediction of the position of an equilibrium reaction when a change of conditions (concentration, pressure, volume and temperature) occurs.
- When a new equilibrium reaches, the concentrations of reactants and products remain constant.

Forward Reaction

$A(g) + 3B(g) \rightleftharpoons C(g) + D(g) \Delta H = -328 \text{ kJ/mol}$

Factors	Position of Equilibrium	
	shift to right	shift to left
Concentration	Increase (substance A)	Decrease (substance A)
Pressure	Increase	Decrease
Temperature	Decrease	Increase
Catalyst	Unchange	

Conclusion

- Chemical equilibrium is referring different substances as reactants and products in an equilibrium, whereas, *physical equilibrium* is equilibrium between two same phases of same composition of reactants and products.
- Equilibrium constants is used as an indicator to show relative amount between reactants and products.
- The direction where an equilibrium reaction will shift is assessed by Le Châtelier's Principle when an occurrence of varying conditions.

AUTHOR INFORMATION

DR. YUEN MEI LIAN (SENIOR LECTURER) INDUSTRIAL CHEMISTRY PROGRAMME FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY UNIVERSITI MALAYSIA PAHANG yuenm@ump.edu.my

Tel. No. (Office): +609 549 2764

DR. SITI NOOR HIDAYAH MUSTAPHA (SENIOR LECTURER)

INDUSTRIAL CHEMISTRY PROGRAMME FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY UNIVERSITI MALAYSIA PAHANG

> snhidayah@ump.edu.my Tel. No. (Office): +609 549 2094

Universiti Malaysia PAHANG