

# **BSK1133 PHYSICAL CHEMISTRY**

# PRACTICE 6

#### PREPARED BY:

DR. YUEN MEI LIAN AND DR. SITI NOOR HIDAYAH MUSTAPHA Faculty of Industrial Sciences & Technology yuenm@ump.edu.my and snhidayah@ump.edu.my





- 1. A man was sweating when he walked from his house to his office. What do you expect the sign for the changes of work (w) and enthalpy (H) for this phenomena?
- 2. State two physical quantities that are **NOT** a state function.
- 3. Magnesium reacted with an acid was carried out in a calorimeter. The temperature of 23.0 grams of liquid water was increased from 25.0°C to 62.0°C in the calorimeter. Calculate the heat energy associated with this reaction. (Given specific heat of water = 4.18 J/g°C).



4. C (graphite) + 
$$O_2$$
 (gas)  $\longrightarrow$   $CO_2$  (gas)  $\Delta H_{rxn}^{\circ} = -393.5$  kilojoule/mol

$$H_2 \text{ (gas)} + \frac{1}{2}O_2 \text{ (gas)} \longrightarrow H_2O \text{ (liquid)} \Delta H_{rxn}^{\circ} = -285.8 \text{ kilojoule/mol}$$

$$2C_2H_6 (gas) + 7O_2 (gas) \rightarrow 4CO_2 (gas) + 6H_2O (liquid)$$
  
 $\Delta H_{rxn}^{\circ} = -3119.6 \text{ kilojoule/mol}$ 

Determine  $\Delta H_{rxn}^{\circ}$  for the reaction below:

2C (graphite) + 3H<sub>2</sub> (gas) 
$$\rightarrow$$
 C<sub>2</sub>H<sub>6</sub> (gas)  $\Delta H_{rxn}^{\circ} =$ 

5. Calculate the work done (in Joules) on the system when 8 L of a gas is compressed to 2.0 L by a constant external pressure of 4 atm. Briefly discuss your answer. (Given: 1L atm = 101.325 J).

#### **ANSWERS:**



- 1.  $w = -, \Delta H = -$
- 2. heat and work
- 3.  $[23 \times (62-25) \times 4.18] = 3557.18 \text{ J}$

4. 
$$2C(c) + 3H_2(g) \rightarrow C_2H_6(g)$$
  $\Delta H_{rxn}^{\circ} = -84.6 \text{ kJ/mol}$ 

5. 
$$w = -P\Delta V = -P (V_2 - V_1)$$
  
= - [4 atm (2.0 L - 8.0 L) x  $\frac{101.325 \text{ J}}{1 \text{ L atm}}$ ]  
= 2.4318 x 10<sup>3</sup> J

Positive value for work shows that work is done on the system by the surroundings. It also means the system gains energy.



# **AUTHOR INFORMATION**

### DR. YUEN MEI LIAN (SENIOR LECTURER)

INDUSTRIAL CHEMISTRY PROGRAMME
FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY
UNIVERSITI MALAYSIA PAHANG

yuenm@ump.edu.my

Tel. No. (Office): +609 549 2764

## DR. SITI NOOR HIDAYAH MUSTAPHA (SENIOR LECTURER)

INDUSTRIAL CHEMISTRY PROGRAMME
FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY
UNIVERSITI MALAYSIA PAHANG

snhidayah@ump.edu.my

Tel. No. (Office): +609 549 2094

