
BSK1133 PHYSICAL CHEMISTRY

CHAPTER 4 REACTION MECHANISM (PART A)

PREPARED BY:

DR. YUEN MEI LIAN AND DR. SITI NOOR HIDAYAH MUSTAPHA Faculty of Industrial Sciences & Technology yuenm@ump.edu.my and snhidayah@ump.edu.my

 \succ To understand the mechanism of a chemical reaction.

Description

Expected Outcomes

 \clubsuit Able to understand the mechanism of a chemical reaction.

References

- ✓ Atkins, P & Julio, D. P. (2006).Physical Chemistry (8th ed.). New York: Oxford.
- ✓ Chang, R. (2005).Chemistry (8th ed.). New York: McGraw Hill.
- Atkins, P & Julio, D. P. (2012). Elements of Physical Chemistry (sixth ed.). Freeman, Oxford.
- ✓ Silbey, R. J., Alberty, A. A., & Bawendi, M. G. (2005). Physical Chemistry. New York: John Wiley & Sons.
- ✓ Mortimer R. G. (2008) Physical Chemistry, Third Edition , Elsevier Academic press, USA.

Contents

- ✤ 4.1 Theory of Chemical Kinetic
- ✤ 4.2 Reaction Rate
- ✤ 4.3 Rate Law and Reaction Order
- ✤ 4.4 Integrated Rate Law
- ✤ 4.5 Half-life
- Conclusion

4.1 Theory of Chemical Kinetic

Chemical Kinetics

Chemical kinetics is concern about the *speeds* or *rates* of a chemical reactions to be occurred.

- Theories of Chemical Kinetics:
 - 1. Collision Theory
 - 2. Transition State Theory

4.1.1 Collision Theory

Collision frequency is the rate of reaction of a chemical process is directly proportional to the number of molecular collisions per unit time.

- When the reacting molecules colliding with one another, only a fraction of the collisions will lead to chemical reaction.
- There are two types of collision:
 - 1) Effective collision (reaction occur)
 - 2) Ineffective collision (no reaction will occur)

Effective Collision:

- The molecular collision can be effective when:
- 1. The reactant molecules have sufficient energy (moving energetically).

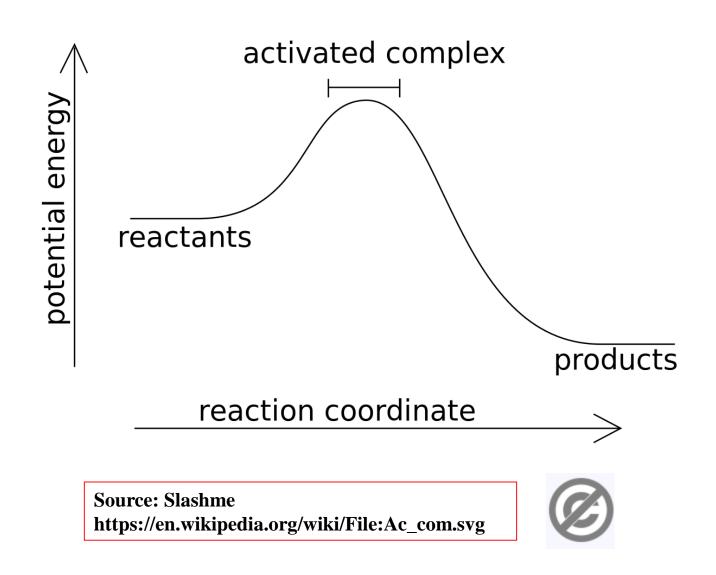
•Activation Energy (E_a) - lowest energy that the molecules must bring to their collisions for a chemical reaction to occur.

- The collision between molecules are oriented correctly (to allow collision)
 - Proper Orientation of Molecules

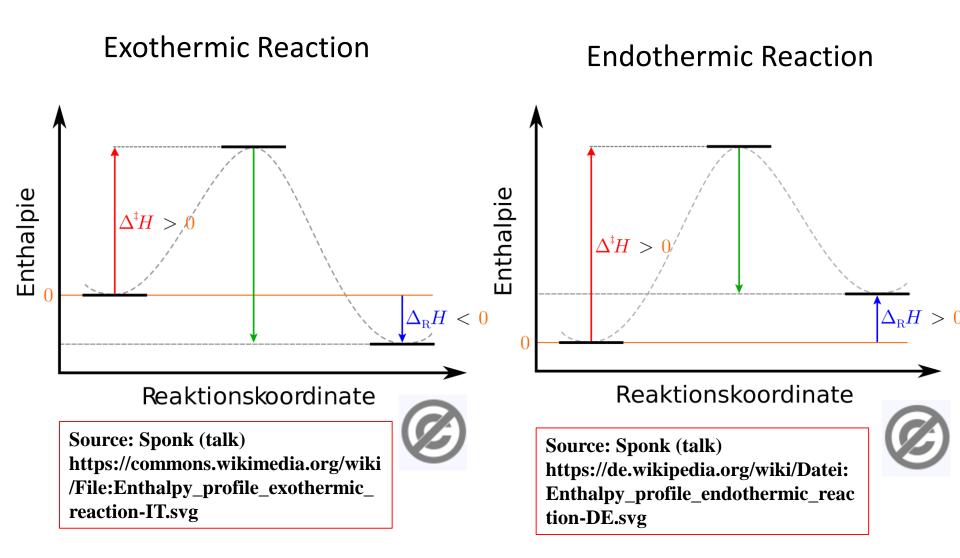
4.1.2 Transition State Theory

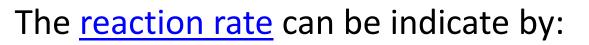
Transition state theory explaining the temporary state that species occur after a reaction of substance and before forming a product.

It called an *activated complex*.



Activated Complex


- Activated complex is a *transition state* that appears between the reactants and the products.
- At this transition state, breaking of chemical bonds of the reactant is in the progress before forming the product.
- At this transition state, the molecule species are very unstable and have high potential energy.


4.2 Reaction Rate

- $\checkmark\,$ Reaction rate is the speed of the reaction process.
- ✓ it can be indicates through the decreasing in the reactant concentration or the increasing in the product formation with time

Reaction rate is **concentration change** divided by time change **Reaction rate =** $\Delta[\mathbf{X}] = [\mathbf{X}]_{\text{final}} - [\mathbf{X}]_{\text{initial}}$ $\Delta t = t_{\text{final}} - t_{\text{initial}}$ Concentration normally in molality (mol·L⁻¹) This means that reaction rate has units mol·L⁻¹·s⁻¹

BY DR. YUEN MEI LIAN http://ocw.ump.edu.my/course/view.php?id=470

- increase in the concentration of a product <u>over time</u>, or
- decrease in the concentration of a reactant over time.

$$A + B \rightarrow C + D$$

Rate = $-\frac{\Delta[A]}{\Delta t} = -\frac{\Delta[B]}{\Delta t} = +\frac{\Delta[C]}{\Delta t} = +\frac{\Delta[D]}{\Delta t}$

Reaction rate is always a positive value

• In general for

$aA + bB \rightarrow cC + dD$

Rate =
$$-\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$$

Time	Concentration (M)				
(s)	N ₂ O ₅	NO ₂	O ₂		
0	0.0200	0	0		
100	0.0169	0.0063	0.0016		
200	0.0142	0.0115	0.0029		
300	0.0120	0.0160	0.0040		
400	0.0101	0.0197	0.0049		
500	0.0086	0.0229	0.0057		
600	0.0072	0.0256	0.0064		
700	0.0061	0.0278	0.0070		
	Testa Post in T		5100		

Between 300 and 400 seconds (at 55 $^{\circ}$ C):

Time		Concentration (M)	
(s)	N_2O_5	NO ₂	O ₂
300	0.0120	0.0160	0.0040
400	0.0101	0.0197	0.0049

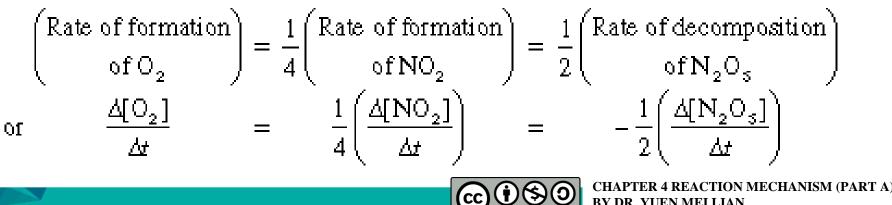
Rate of decomposition of $N_2O_5 =$ $\Delta[N_2O_5] / \Delta t =$ (0.0101 mol·L⁻¹ - 0.0120 mol·L⁻¹) / (400 s - 300 s) = 1.9 x 10⁻⁵ mol·(L·s)⁻¹

Between 300 and 400 seconds (at 55 $^{\circ}$ C):

N2O5 NO2 O2 0.0120 0.0160 0.0040 0.0101 0.0197 0.0049	Time	Concentration (M)		
	(s)	N ₂ O ₅	NO ₂	O ₂
0.0101 0.0197 0.0049	300	0.0120	0.0160	0.0040
	400	0.0101	0.0197	0.0049
Rate of formation of NO ₂ =	orati			
	+ (0.0		NO ₂] / ∆t = .0160 mol·L ⁻¹) / (4	400 s – 300
7 mol·L ⁻¹ – 0.0160 mol·L ⁻¹) / (400 s – 300				

Between 300 and 400 seconds (at 55 $^{\circ}$ C):

(s) N_2O_5 NO_2 O_2 300 0.0120 0.0160 0.0040 400 0.0101 0.0197 0.0049 Rate of formation of $O_2 =$	Time		Concentration (M)			
$\frac{400}{1000000000000000000000000000000000$		N ₂ O ₅	NO ₂	O ₂		
Rate of formation of O ₂ =	300	0.0120	0.0160	0.0040		
	400	0.0101	0.0197	0.0049		
	REL		Example 1 For the function of $O_2 = [O_2] / \Delta t =$			
	+ (0.0			400 s – 300		
+ (0.0049 mol·L ⁻¹ – 0.0040 mol·L ⁻¹) / (400 s – 300		= 9 x 1 (0 ⁻⁶ mol·(L·s) ⁻¹			



The three values for rate that we calculated are not the same!

Why?

We have <u>different molar amounts</u>.

But the relative rates ARE THE SAME!

http://ocw.ump.edu.my/course/view.php?id=470

$2 N_2 O_5 (g) \rightarrow 4 NO_2 (g) + O_2 (g)$

The <u>relative</u> rate of formation of O_2 is (1/1) 9 x 10⁻⁶ mol·(L·s)⁻¹ = 9 x 10⁻⁶ mol·(L·s)⁻¹

The <u>relative</u> rate of formation of NO₂ is (1/4) $3.7 \times 10^{-5} \text{ mol} \cdot (\text{L} \cdot \text{s})^{-1} = 9.25 \times 10^{-6} \text{ mol} \cdot (\text{L} \cdot \text{s})^{-1}$

The <u>relative</u> rate of decomposition of N_2O_5 is (1/2) 1.9 x 10⁻⁵ mol·(L·s)⁻¹ = 9.5 x 10⁻⁶ mol·(L·s)⁻¹

4.3 Rate Law and Reaction Order

Rate law is the equation that showing the relationship of reaction rate and concentrations of the reactants.

$aA + bB \rightarrow products$

Rate = $k [A]^m [B]^n$

k is the rate constant m and n is the reaction order # remember, it is not stoichiometry coefficient.

The <u>overall reaction order</u> is **m + n**

Reaction order example

rate = k [C]
2
[D]

The reaction order with respect to C is 2 or the reaction is second order in C

The reaction order with respect to D is 1 or the reaction is first order in D

The <u>overall</u> reaction order is 3 (2 + 1 = 3) or the reaction is <u>third order overall</u>

4.3.1 Experimental Determination of a Rate Law

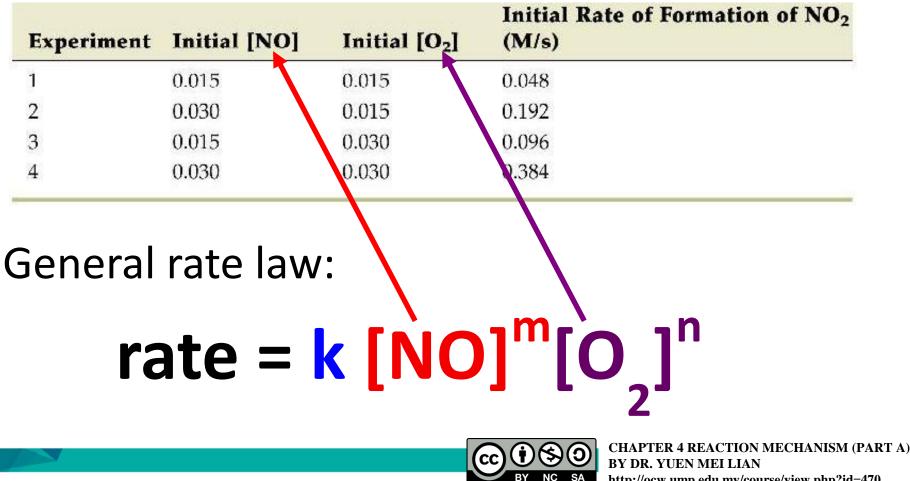
Reaction rate laws can <u>only</u> be determined experimentally!

In defining the rate law, a series of experiments need to carried out by:

Measuring the initial rate of the reaction as function of different initial concentrations of the reactants

Method of initial rates

If you see a table like this with **chemical concentrations or pressures** and **rate data**, chances are good the question is a **method of initial rates** problem.


> Initial Concentration and Rate Data for the Reaction 2 NO(g) + O₂(g) \longrightarrow 2 NO₂(g)

Experiment	Initial [NO]	Initial [O ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

$2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{NO}_2(g)$

Initial Concentration and Rate Data for the Reaction $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g)$

http://ocw.ump.edu.my/course/view.php?id=470

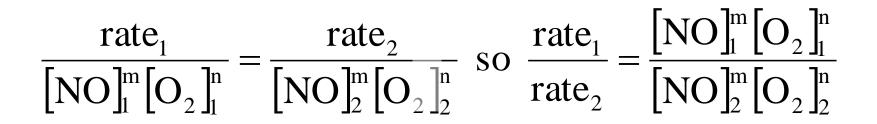
Method of initial rates

Method to calculate the order of reaction:

- 1. Choose a pair of reactions where <u>only</u> one reactant concentration changes.
- 2. In this case, experiments 1 and 2 is being selected.

Initial Concentration and Rate Data for the Reaction 2 NO(g) + O₂(g) \longrightarrow 2 NO₂(g)

Experiment	Initial [NO]	Initial [O ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

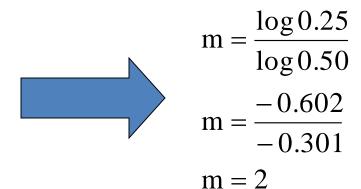


rate = $k [NO]^m [O_2]^n$

k is the rate <u>constant</u>. Thus, the value is constant through out the reaction

(k for experiment 1 = k for experiment 2)

 $\mathbf{k} = \mathbf{rate} / [\mathbf{NO}]^{\mathbf{m}} [\mathbf{O}_{2}]^{\mathbf{n}}$

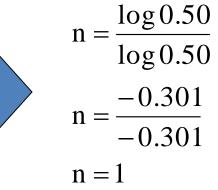

Reaction order w.r.t. NO

Initial Concentration and Rate Data for the Reaction 2 NO(g) + O₂(g) \longrightarrow 2 NO₂(g)

Experiment	Initial [NO]	Initial [O ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

 $\log 0.25 = \log \left[(0.50)^{\mathrm{m}} \right]$

 $\log 0.25 = m \log 0.50$



Reaction order w.r.t. O

Initial Concentration and Rate Data for the Reaction $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g)$

Experiment	Initial [NO]	Initial [O ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

$$\frac{0.048 \text{ M} \cdot \text{s}^{-1}}{0.096 \text{ M} \cdot \text{s}^{-1}} = \frac{(0.015 \text{ M})^2 (0.015 \text{ M})^n}{(0.015 \text{ M})^2 (0.030 \text{ M})^n}$$
$$0.50 = (0.50)^n$$
$$\log 0.50 = \log \left[(0.50)^n \right]$$
$$\log 0.50 = n \log 0.50$$

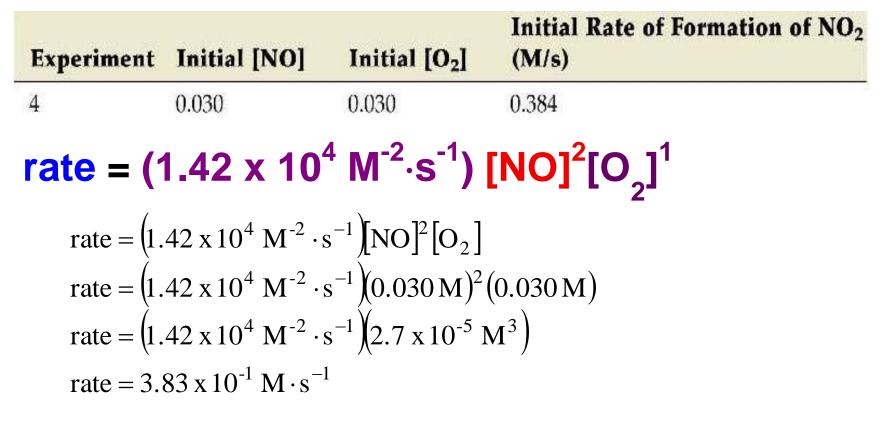
$rate = k [NO]^2 [O_2]^1$

Using data from experiment 1, the rate constant calculated as follows:

Experiment	Initial [NO]	Initial [O ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
k = rate	/ [NO] ² [O ₂] ¹	

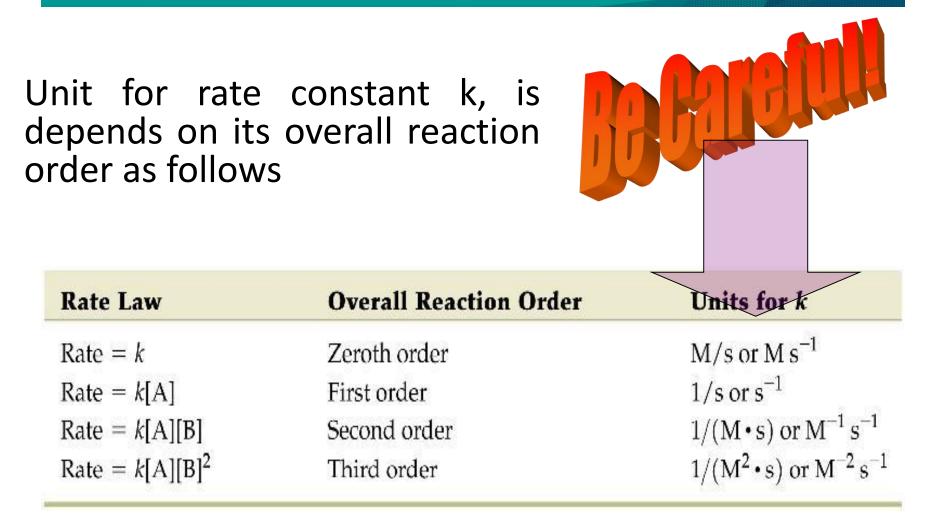
$$k = \frac{\text{rate}}{[NO]^2[O_2]} = \frac{0.048 \,\text{M} \cdot \text{s}^{-1}}{(0.015 \,\text{M})^2 (0.015 \,\text{M})} = \frac{0.048 \,\text{M} \cdot \text{s}^{-1}}{3.38 \,\text{x} \,10^{-6} \,\text{M}^3}$$
$$k = 1.42 \,\text{x} \,10^4 \,\text{M}^{-2} \cdot \text{s}^{-1}$$

Using data from experiment 2, the rate constant calculated as follows:


Experiment	Initial [NO]	Initial [O ₂]	Initial Rate of Formation of NO ₂ (M/s)
2	0.030	0.015	0.192
k = rate	• / [NO] ² [0 ₂] ¹	

$$k = \frac{\text{rate}}{[\text{NO}]^2[\text{O}_2]} = \frac{0.192 \,\text{M} \cdot \text{s}^{-1}}{(0.030 \,\text{M})^2 (0.015 \,\text{M})} = \frac{0.192 \,\text{M} \cdot \text{s}^{-1}}{1.35 \,\text{x} \,10^{-5} \,\text{M}^3}$$
$$k = 1.42 \,\text{x} \,10^4 \,\text{M}^{-2} \cdot \text{s}^{-1}$$

The rate constant is the same, as it should be!


Check using extra experiment

The rate value of the rate of reaction using rate law equation should same (within rounding errors) for each experimental concentration data.

Units of rate constants

4.4 Integrated Rate Law

Integrating the rate law of first order given as:

$$\ln \frac{[A]_t}{[A]_0} = -kt$$

where

 $[A]_0$ is the initial concentration of A. $[A]_t$ is the concentration of A at time, *t*. t is the time of reaction process

Integrated Rate Laws

From the integrated rate law (1st order) equation:

$$\ln \frac{[A]_t}{[A]_0} = -kt$$

$$\ln [A]_t - \ln [A]_0 = -kt$$

$$\ln [A]_t = -kt + \ln [A]_0$$

V

Could be graphically identify the important parameters

= mx + b

First-Order Processes

- Concentration can be also being indicated by using pressure according to the theory of properties relationship.
- When a graph of In P vs time is plotted, a straight line results with negative slope.

Second-Order Processes

From the integrated rate law (2st order) equation:

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

y = mx + b

Could be graphically identify the important parameters

Second-Order Processes

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

 When a graph of 1/[A] vs time is plotted, a straight line results with positive slope.

4.5 Half-life

The half life calculations for 1st order reaction as follows:

$$\ln \frac{0.5 \, [A]_0}{[A]_0} = -kt_{1/2}$$
$$\ln 0.5 = -kt_{1/2}$$
$$-0.693 = -kt_{1/2}$$
$$\frac{0.693}{k} = t_{1/2}$$

NOTE: For a first-order process, the half-life does not depend on initial concentration, $[A]_0$.

For a 2nd order process:

$$\frac{1}{0.5 [A]_0} = kt_{1/2} + \frac{1}{[A]_0}$$
$$\frac{2}{[A]_0} = kt_{1/2} + \frac{1}{[A]_0}$$
$$\frac{2-1}{[A]_0} = \frac{1}{[A]_0} = kt_{1/2}$$
NOTE:
$$\frac{1}{k[A]_0} = t_{1/2}$$

NOTE: For a 2^{nd} order is depending on initial concentration, $[A]_0$.

Conclusion

- A chemical reaction goes through its mechanism which depends on its order of reaction.
- The value of certain parameters such as half life, reaction constant could be calculated using equation or graphic

AUTHOR INFORMATION

DR. YUEN MEI LIAN (SENIOR LECTURER) INDUSTRIAL CHEMISTRY PROGRAMME FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY UNIVERSITI MALAYSIA PAHANG yuenm@ump.edu.my

Tel. No. (Office): +609 549 2764

DR. SITI NOOR HIDAYAH MUSTAPHA (SENIOR LECTURER)

INDUSTRIAL CHEMISTRY PROGRAMME FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY UNIVERSITI MALAYSIA PAHANG

> snhidayah@ump.edu.my Tel. No. (Office): +609 549 2094

CHAPTER 4 REACTION MECHANISM (PART A) BY DR. YUEN MEI LIAN http://ocw.ump.edu.my/course/view.php?id=470

Universiti Malaysia