

BSK1133 PHYSICAL CHEMISTRY CHAPTER 1 KINETIC THEORY OF GASES (PART B)

PREPARED BY:

DR. YUEN MEI LIAN AND DR. SITI NOOR HIDAYAH MUSTAPHA Faculty of Industrial Sciences & Technology yuenm@ump.edu.my and snhidayah@ump.edu.my

Description

Aims

- To understand the derivation of an ideal gas equation by using theory of kinetic
- To understand the Boltzman relationship of gases

Description

Expected Outcomes

- Able to understand the kinetic molecular theory of gases and how an ideal gas equation derived using that theory
- ✤ Able to understand the Boltzman relationship of gases

References

- ✓ Atkins, P & Julio, D. P. (2006).Physical Chemistry (8th ed.). New York: Oxford.
- ✓ Chang, R. (2005).Chemistry (8th ed.). New York: McGraw Hill.
- ✓ Atkins, P & Julio, D. P. (2012). Elements of Physical Chemistry (sixth ed.). Freeman, Oxford.
- ✓ Silbey, R. J., Alberty, A. A., & Bawendi, M. G. (2005). Physical Chemistry. New York: John Wiley & Sons.
- ✓ Mortimer R. G. (2008) Physical Chemistry, Third Edition , Elsevier Academic press, USA.

Contents

 1.5 Derivation of Ideal Gas using Theory of Molecular Kinetic

1.6 Boltzman Constant Relationship

Conclusion

1.5 Derivation of Ideal Gas using Theory of Molecular Kinetic

Assumptions based on derivation

- composed of molecules which are separate and tiny particles
- * gas molecules have kinetic energy ($KE = \frac{1}{2} \text{ mv}^2$) which are in rapid, constant and straight line motion. (which means)
- the collisions between molecules are completely <u>elastic</u> where there is no exchange of energy
- there is no attraction or repulsion between gas molecules.
- Each molecule exhibits different velocity.

Detail explanation on the assumptions and derivation

- ➤ Consider a room which has a cube shape with six surfaces. The pressure on each of the surfaces is the same.
- Imagine that there are a single gas molecule in the room.
 Force will be exerted when that gas molecule strikes the walls of the room.
- Physicists consider a force to have been exerted when there is a change in the momentum of a particle.
- Momentum (p) = mass of the particle (m) X the velocity (u) of the particle.

- If the particle collide to the room surfaces with perfect elastic collision (u), then, the particle will rebound in the exact opposite direction with exactly same momentum (-u).
- The change in velocity can be determined by:
 u = velocity before velocity after
 u = u (-u) = 2u
- **>** Momentum : p = m x u = m(2u) = 2mu
- The momentum (force) exerted is consistent in all surfaces of the room.
- Thus, we can conclude that the particle must travel a distance of 2d before it strikes the same surface again.

- However, the times of the particle strikes the same surface will depend on how fast it travels, u, and the distance between each event:
- Rate the particle strikes the room surface $=\frac{u}{2d}$
- Thus, the force exerted by a particle = 2 mu x $\frac{u}{2d}$
- Force exerted to the wall of the room = $\frac{mu^2}{d}$

- ➤ In a space, there must consist a lots of gas particles that freely filled the space. Considering the number of particles in this space as N.
- ➢ How many of these particles will be striking the surface of interest? $\frac{1}{3}N$
- The total force exerted on this surface can now be determined:

> Total Force =
$$\frac{1}{3}$$
 N x $\frac{\text{mu}^2}{\text{d}}$

- Since we know the pressure equation is: $P = \frac{F}{A}$ And the force calculated for a single particle $= \frac{1}{3} N \times \frac{mu^2}{d}$
- The surface area of the room (assuming it a cube shape): $A = d^2$

The pressure can now be determined:

$$P = \frac{1}{3} N \frac{mu^2}{d^3}$$

$$P = \frac{1}{3} N \frac{mu^2}{V} \quad \text{(where } d^3 = V\text{)}$$

Rearrange this equation to obtain:

$$PV = \frac{1}{3} N mu^2$$

 $\blacktriangleright \text{ Recall that KE} = \frac{1}{2} \text{ mu}^2$

►
$$PV = (\frac{1}{2} mu^2) (\frac{2}{3}N)$$

►
$$PV = (KE)(\frac{2}{3}N)$$

1.6 Boltzman Constant Relationship

Boltzmann Relationship

The Boltzmann relationship between kinetic energy and temperature is:

$$KE = \frac{3}{2} kT$$

> Boltzman constant, k is R/N_A

$\geq k = 1.38064852(79) \times 10^{-23} \text{ J/K}$

Replace KE with this term:

$$PV = \left(\begin{array}{c} \frac{3}{2} kT \end{array}\right) \left(\begin{array}{c} \frac{2}{3}N \end{array}\right)$$

or
$$PV = NkT$$

- N = number of particles
- N / N_A (Avogadro's number) = n (number of mol).
- K (Boltzman constant) / $N_A = R$ (the gas constant)

Simplifying the equation will finally form:

 $\mathbf{PV} = \mathbf{nRT}$

an ideal gas equation

Conclusion

The ideal gas equation is derived based on the theory of molecular kinetic of the gas.

Temperature play a significant role to the kinetic of the gas molecules which can be seen in Boltzman relationship.

AUTHOR INFORMATION

DR. YUEN MEI LIAN (SENIOR LECTURER) INDUSTRIAL CHEMISTRY PROGRAMME FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY UNIVERSITI MALAYSIA PAHANG yuenm@ump.edu.my

Tel. No. (Office): +609 549 2764

DR. SITI NOOR HIDAYAH MUSTAPHA (SENIOR LECTURER)

INDUSTRIAL CHEMISTRY PROGRAMME FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY UNIVERSITI MALAYSIA PAHANG

> snhidayah@ump.edu.my Tel. No. (Office): +609 549 2094

Universiti Malaysia