BSK1133 PHYSICAL CHEMISTRY

CHAPTER 1
 KINETIC THEORY OF GASES (PART A)
 PREPARED BY:

DR. YUEN MEI LIAN AND DR. SITI NOOR HIDAYAH MUSTAPHA Faculty of Industrial Sciences \& Technology yuenm@ump.edu.my and snhidayah@ump.edu.my

Description

Aims

$>$ To understand the properties of gases.
$>$ To study the kinetic theory of gases.

Description

Expected Outcomes

* Able to understand the properties and importance law of gases
Able to understand the kinetic theory of gases at different properties changes

References

\checkmark Atkins, P \& Julio, D. P. (2006).Physical Chemistry (8th ed.). New York: Oxford.
\checkmark Chang, R. (2005).Chemistry (8th ed.). New York: McGraw Hill.
\checkmark Atkins, P \& Julio, D. P. (2012). Elements of Physical Chemistry (sixth ed.). Freeman, Oxford.
\checkmark Silbey, R. J., Alberty, A. A., \& Bawendi, M. G. (2005). Physical Chemistry. New York: John Wiley \& Sons.
\checkmark Mortimer R. G. (2008) Physical Chemistry, Third Edition, Elsevier Academic press, USA.

Contents

* 1.1 Gases and Its Properties

* 1.2 Gas Law
* 1.3 Gases Properties Calculation
* 1.4 Kinetic Molecular Theory
* Conclusion

1.1 Gases and its properties

CC)(§(O) CHAPTER 1 KINETIC THEORY OF GASES (PART A)

Gases

Elements that exist as gases at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and 1 atmosphere

Sources:

Compressibility of Gases

- Unlike a liquid or solid which has its atomic particles in contact with one another, gas particles are far apart, colliding with one another and bouncing off in different directions. This means that a gas has no definite shape or volume and will expand to fill the container.
- Since gas has a great distance between its particles, gas has lower density as compared to solid or liquid; can be compressed.

Properties of Gases

Property	Description	Unit(s) of Measurement
Pressure (P)	The force exerted by gas against the walls of the container	$\mathrm{atm}, \mathrm{mmHg}$, torr, kPa
Volume (V)	The space occupied by the gas	L, mL
Temperature (T)	Determines the kinetic energy and rate of motion of the gas particles	${ }^{\circ} \mathrm{C}, \mathrm{K}$
Amount of gas (n)	The quantity of gas present in a container	g, mol

Gas Pressure

Sources:
 Olivier Cleynen and User: Sharayanan
 https://commons.wikimedia.org/ wiki/File:Kinetic_theory_of_gas es_(2).svg

Gas particles are extremely small. Thus, billions of the gas particles will hit the walls of a container and exerts a force which known as pressure (Pressure $=$ Force / Area).

The gas pressure is increased by increasing the frequency of collisions between gas particles and the walls of the container.

The frequency of collisions can be increased by:

1) Increasing the temperature of the gas:

At higher temperatures, the movement of gas particles is faster and hitting the walls of container with more force and higher frequency. As a result, the gas pressure increases.
2) Increasing the number of moles (n) (increasing the concentration of gas particles):
Increasing the concentration of gas particles inside a container has resulted in increasing the collision frequency between the gas particles and the walls of the container; leading to an increase in the gas pressure inside the container. The unequal concentration of gas particles on either sides of the walls of the container causes a pressure differential to develop across the walls of the container.

Atmospheric Pressure:

Sources:

Volker Sperlich

Unit Measuring Pressure:

Unit	Abbreviation	Unit equivalent to 1 atm
Atmosphere	atm	1 atm (exact)
Molimeters of Hg	mmHg	760 mmHg
Torr	torr	760 torr
Pounds per square inch	$\mathrm{Lb} / \mathrm{in} 2(\mathrm{psi})$	14.7 psi
Kilopascal	kPa	101.325 kPa

Unit SI : Pascal (Pa)
$1 \mathrm{bar}=100,000 \mathrm{~Pa}$

Effect of atmospheric pressure to altitude:

Atmospheric pressure changes with altitude. As one ascends altitude, the air becomes less dense, causing lower atmospheric pressure. Conversely, in Death Valley, which is 282 feet below sea level, the air is denser and atmospheric pressure is greater.

Location	Altitude (km)	Atmospheric Pressure (mmHg)
Sea level	0	760
Los Angeles	0.009	752
Las Vegas	0.70	700
Denver	1.60	630
Mount Whitney	4.50	440
Mount Everest	8.90	253

[^0]

Effect of atmospheric pressure to weather:

Variations in weather also cause changes in atmospheric pressure. On a hot sunny day, the pressure on the mercury surface increases, causing the mercury column to rise to indicate a higher atmospheric pressure (weather report: high pressure system). Conversely, low pressure was found on a rainy day and the mercury column drops (weather report: low pressure system).

1.2 Gas laws

BY DR. YUEN MEI LIAN
BY
NC
SA
http://ocw.ump.edu.my/course/view.php?id=470

Boyle's Law : Pressure vs Volume

In a piston-cylinder system, a movable, frictionless piston encloses an amount of n moles of a gas. When the volume of the gas decreases by one-half by compressing the cylinder, the pressure of the gas increases two-fold. This inverse relationship between volume and gas pressure is known as Boyle's law:

$$
\mathbf{P}_{1} \mathbf{V}_{1}=\mathbf{P}_{2} \mathbf{V}_{2}
$$

Product $\mathrm{PV}=$ Constant
P and V show an inverse relationship.
Conditions for Boyle's Law:

1) \mathbf{n} moles of gas particles remain constant.

2) temperature in chamber remains constant.
 https://commons.wikimedia.org/wiki/Fil e:2314_Boyles_Law.jpg

$P \propto 1 / V$

$P \times V=$ CONSTANT

$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

Constant temperature
 Constant amount of gas

Charles' Law : Temperature vs Volume

In 1787, Jacques Charles, a French physicist and a balloonist has proposed Charles' law which stated that:

The volume of a gas is directly proportional to the temperature (in Kelvin) at constant pressure and amount of gas (in moles).

Charles' law can be written as:

$$
\mathrm{V} \propto \mathrm{~T} \text { or } \mathrm{V}_{1 /} / / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}
$$

Temperature and Volume show a direct relationship.
Conditions for Charles' Law:

1) \mathbf{n} moles of gas particles remain constant.
2) pressure in chamber remains constant.

```
Sources:
Physchim62
https://commons.wikimedia.org/wiki/File:Char
les%27s_law_graph.png
```


$V \propto T$
$V=$ constant $\mathrm{x} T$
Temperatures must be
expressed in unit Kelvin.
$V_{1} / T_{1}=V_{2} / T_{2}$

Gay Lussac's Law : Temperature vs Pressure

Gay-Lussac propounded a gas law that relates the temperature to the pressure of the gas; known as Gas-Lussac's Law:

The pressure of a gas is directly proportional to its temperature (in Kelvin).
Increasing temperature will increase the pressure of the gas, at constant volume and number of moles (n).
$\mathbf{P}_{1 / /} / T_{1}=\mathbf{P}_{2} / T_{2}$
Conditions for Gay Lussac's Law:

1) \mathbf{n} moles of gas particles remain constant.
2) volume of system remains constant.

Combined Gas Law

The Combined Gas Law is the relationships among the conditions of pressure, volume and temperature for gases which the amount of gas (in moles) is remained constant.

Combined gas law:

$$
\mathbf{P}_{1} \mathbf{V}_{1} / \mathbf{T}_{1}=\mathbf{P}_{2} \mathbf{V}_{2} / \mathbf{T}_{2}
$$

Avogadro's Hypothesis

Avogadro's hypothesis stated that:
Equal number of molecules consists of the same volumes of gases at constant temperature and pressure.

$$
\mathbf{V}_{1 /} / / \mathbf{n}_{1}=\mathbf{V}_{2} / \mathbf{n}_{2}
$$

Conditions for Avogrado's Law:

1) Temperature of gas particles remain constant.
2) Pressure of system remains constant.

Example:
22.414 L of any gas consists of 6.022×10^{23} atoms (or molecules) at 1 atm and $0^{\circ} \mathrm{C}$.

Dalton's Law

Sources:
https://ar.wikipedia.org/wiki/\�\�\�\% 84\%D9\%81:Dalton\%27s_law_of_partial_pres sures.png

Dalton's Law of Partial Pressure states that the total pressure ($\mathrm{P}_{\text {total }}$) for a mixture of unreactive gases is the sum of the partial pressures $\left(\mathrm{P}_{\mathrm{n}}\right)$ of individual gases.

$$
\mathbf{P}_{\text {total }}=\mathbf{P}_{1}+\mathbf{P}_{2}+\mathbf{P}_{3}+\ldots
$$

Sources:

Dr. Blair Jesse Ellyn Reich
https://commons.wikimedia.org/wiki/File:Presiones_ parciales.JPG

As shown in the figure:
Tank A: hydrogen gas $\left(\mathrm{H}_{2}\right)$ at 2.9 atm. Tank B: helium gas (He) at 7.2 atm. Tank C: total pressure of $\mathrm{H}_{2}+\mathrm{He}$ is 10.1 atm .

Condition:

3 tanks are same the volume and temperature.
Number of gas molecules determines the gas pressure in a container regardless the type of gas.
V and T are constant

Example: Gas A and gas B are in a container of volume V

$$
\begin{array}{ll}
P_{\mathrm{A}}=\frac{n_{\mathrm{A}} \mathrm{RT}}{V} & n_{\mathrm{A}} \text { is the number of moles of } \mathrm{A} \\
P_{\mathrm{B}}=\frac{n_{\mathrm{B}} \mathrm{RT}}{V} & n_{\mathrm{B}} \text { is the number of moles of } \mathrm{B} \\
P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} & X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \quad X_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \\
P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{T}} & P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{T}}
\end{array}
$$

$$
P_{i}=X_{i} P_{\mathrm{T}}
$$

mole fraction $\left(X_{i}\right)=\frac{n_{i}}{n_{T}}$

Using Mole Fraction to Calculate Partial Pressure of A Gas:

The partial pressures of the component gases in a mixture can be calculated by knowing the amounts (in moles) and the total gas pressure $\left(\mathrm{P}_{\mathrm{T}}\right)$ of the gas mixture.
Example: A gas mixture contains 3 different gases: A, B, and C. There are n_{A} moles of $\mathrm{A}, \mathrm{n}_{\mathrm{B}}$ moles of B , and n_{C} moles of C .

The total number of moles $\left(\mathrm{n}_{\mathrm{T}}\right)$ of gases in a mixture, $\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{C}}$
Hence, the mole of the individual gas can be expressed as the mole fraction X:

$$
X_{A}=\frac{\mathbf{n}_{A}}{\mathbf{n}_{A}+\mathbf{n}_{B}+\mathbf{n}_{C}}=\underline{n}_{\underline{A}} \mathbf{n}_{T}
$$

The partial pressure of gas component $\mathrm{A}, \mathrm{P}_{\mathrm{A}}$, can be determined by multiplying its mole fraction with the total gas pressure P_{T} :

$$
\mathbf{P}_{\mathrm{A}}=\mathbf{X}_{\mathbf{A}} \mathbf{P}_{\mathbf{T}}
$$

Ideal Gas Equation

Boyle's law: $V \propto \frac{1}{P}$ (at constant n and T)
Charles' law: $V \propto T$ (at constant n and P)
Avogadro's law: $\mathrm{V} \propto n$ (at constant P and T)
$V \propto \frac{n T}{P}$
$V=$ constant $\mathrm{x} \quad \frac{n T}{P}=R \quad \frac{n T}{P} \quad R$ is the gas constant

Boyle's Law:

Increasing or decreasing the volume of a gas at a constant temperature. $\quad P=(n R T) \frac{1}{V} ; \quad n R T$ is constant

Charles' law:

Heating or cooling a gas at constant pressure.

$$
V=\frac{n R}{P} T ; \quad \frac{n R}{P} \text { is constant }
$$

Heating or cooling a gas at constant volume.

$$
P=\frac{n R}{V} T ; \quad \frac{n R}{V} \text { is constant }
$$

Avogrado' law:
Dependence of volume on amount of gas at constant temperature and pressure.

$$
V=\frac{R T}{P} n ; \quad \frac{R T}{P} \text { is constant }
$$

Ideal Gas Equation:

The conditions $0^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

$$
P V=n R T
$$

$$
R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}
$$

$$
R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K})
$$

1.3 Calculations

CHAPTER 1 KINETIC THEORY OF GASES (PART A)
BY DR. YUEN MEI LIAN
http://ocw.ump.edu.my/course/view.php?id=470

Density and Molar Mass Calculation

Density (ρ) Calculations

$\rho=\frac{m}{V}=\frac{P \mathcal{M}}{R T} \quad \begin{aligned} & m \text { is the mass of the gas in } g \\ & \mathcal{M} \text { is the molar mass of the gas }\end{aligned}$

Molar Mass (M) of a Gaseous Substance
$\mathcal{M}=\frac{\rho R T}{P}$
ρ is the density of the gas in g / L

1.4 Kinetic Molecular Theory

CC)(§(O) CHAPTER 1 KINETIC THEORY OF GASES (PART A)

BY DR. YUEN MEI LIAN

Postulates of the Kinetic Molecular Theory of Gases:

1. Small particles (atoms or molecules) in gas move rapidly and randomly.

Gas molecules moving in all directions at high speeds cause a gas to fill the entire volume of a container.
2. The attractive forces between gas particles are negligible.

Gas particles move far apart and expand to fill a container of any size and shape.
3. Gas molecules occupied very small volume compared to the volume that the gas occupies.

Most of the volume of a gas is empty space, which allows gases to be compressible.
4. The average kinetic energy of gas molecules is directly proportional to temperature.

Gas particles move faster as the temperature increases, hitting the walls of the container with more force and producing higher pressures.
5. Gas particles move in straight paths until colliding with other gas particles or with the walls of the container to bounce off elastically in other directions.

An increase in either the frequency or force of collisions lead to an increase in the gas pressure.

Briefly kinetic model is based on three assumptions:

1) The gas exhibits random motion.
2) The size of the molecules is negligible (much smaller than the average distance travelled between collisions).
3) The molecules interact through infrequent and elastic collisions.

$$
\begin{aligned}
& \overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}} \rightarrow \overline{v^{2}}=\overline{v_{x}^{2}}+\overline{v_{x}^{2}}+\overline{v_{x}^{2}}=3 \overline{v_{x}^{2}} \\
& \overline{v_{x}^{2}}=\frac{1}{3} \overline{v^{2}} \\
& P V=N m \overline{v_{x}^{2}}=\frac{1}{3} N m \overline{v^{2}}=\frac{2}{3} N\left(\frac{1}{2} m \overline{v^{2}}\right) \\
& \text { Gas Pressure in the Kinetic Theory: } \overline{K E}=\frac{1}{2} m \overline{v^{2}} \\
& P V=\frac{1}{3} N m \overline{v^{2}}=\frac{1}{3} n M \overline{v^{2}} \\
& P=\text { gas pressure, } \mathrm{V}=\text { volume } \\
& \overline{v^{2}}=\text { mean square velocity } \\
& N=\text { number of gas molecules } \\
& n=\text { mole number of gas molecules }=N / N_{A} \\
& N_{A}=\text { Avogadro's number } \\
& m=\text { mass of the gas molecule } \\
& M=\text { molar mass of the gas molecule }
\end{aligned}
$$

Conclusion

* Gas particle is sensitively reacted to temperature, volume, pressure and number of mole changes.

Gas has a specific condition at standard temperature and pressure (STP).

* Gas stoichiometry may relates to other properties of gases.
* Properties of gases can be identify using its mole concentration, density, molar mass.

The speed of gas molecules can be determine using its kinetic theory of gases

AUTHOR INFORMATION

DR. YUEN MEI LIAN (SENIOR LECTURER)

INDUSTRIAL CHEMISTRY PROGRAMME
FACULTY OF INDUSTRIAL SCIENCES \& TECHNOLOGY UNIVERSITI MALAYSIA PAHANG yuenm@ump.edu.my Tel. No. (Office): +609 5492764

DR. SITI NOOR HIDAYAH MUSTAPHA (SENIOR LEGTURER)

INDUSTRIAL CHEMISTRY PROGRAMME
FACULTY OF INDUSTRIAL SCIENCES \& TECHNOLOGY UNIVERSITI MALAYSIA PAHANG
snhidayah@ump.edu.my
Tel. No. (Office): +609 5492094

[^0]: Sources: https://pixabay.com/en/landscape-mountain-mountain-peak-1869192/

