

ANALYTICAL CHEMISTRY

Precipitation Titration

by Wan Norfazilah Wan Ismail Faculty of Industrial Sciences & Technology norfazilah@ump.edu.my

Precipitation Titration by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology

Chapter Description

- Expected Outcomes
 - Describe the fundamental of precipitation titration
 - State the types and limitations of precipitation titration
 - Describe the precipitation titration curve involving silver ion

Contents

- Introduction
- Types of Precipitation Titration
- Limitation of Precipitation Titration
- Precipitation Titration Curves Involving Silver Ion

INTRODUCTION

- Precipitation titration: titration of analyte with a standard solution of a precipitating agent. e.g. Cl⁻ can be determined when titrated with AgNO₃.
- Titrations with silver nitrate are sometimes called argentometric titrations.
- End point is determined by either the appearance of excess titrant or the disappearance of the reactant (color indicator @ instrumental methods).
- Silver nitrate, is the most widely used and important precipitating reagent for the determination of the halogens.

METHODS IN PRECIPITATION TITRATION

Detection of end point:

<u>Chemical</u>

- -Precipitation Type Mohr's method
- -Adsorption Fajan's method
- -For silver analyses Volhard method

<u>Sensors – Potentiometric or amperometric</u>

The chemical types are also classified into:

- 1. Indicators reacting with titrant forming specific color.
- 2. Adsorption indicators.

This method utilizes **chromate as an indicator**. The method is applicable to the determination of Cl⁻ and Br⁻, but not for I⁻ or SCN⁻.

Titration: $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$ End point: $Ag^+(aq) + CrO_4^{2-}(aq) \rightarrow Ag_2CrO_4(s)$

The first drop of excess Ag⁺ will react with the chromate indicator (reddish precipitate) after all Cl⁻ has been consumed to formed AgCl.

This method can incur relatively greater titration error because it is difficult to observe the red color (Ag_2CrO_4 precipitate) over the yellow color (CrO_4^{2-1} ion). At present, this method is not widely used as other end point detection method are now available.

- Direct titration
- **Basis of endpoint:** formation of a colored secondary precipitate
- Indicator: soluble chromate salt (Na_2CrO_4, K_2CrO_4)

Endpoints for Argentometric Titrations

Precipitation Type - Mohr's method

Ag₂CrO₄ precipitation in neutral pH solution.. Product is coloured

Colour forms just after AgCl or Ag I forms . Small error involved.

- Has to be performed at a neutral or weak basic solution of pH 7-9 (or 6-10)
- In a lower pH (acid solution) $CrO_4^{2-}(aq) + H^+(aq) \rightarrow H_2CrO_4$ $H_2CrO_4 \leftrightarrow 2H^+(aq) + CrO_4^{2-}(aq)$
- In a higher pH (basic solution)
 Ag⁺(aq) + OH⁻(aq) → AgOH(s)

Before endpoint	 Addition of silver ions Formation of AgCl (white precipitate Chromate indicator → faint yellow colour
At the endpoint	 All Cl⁻ has been comsumed Excess Ag⁺ react with chromate ion → slight reddish colour
After endpoint,	• Increase formation of silver chromate (stronger reddish precipitate)
excess Ag ⁺	Precipitation Titration by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=40

Communitising Technology

Clear yellow colour of chromate indicator solution before addition of any silver nitrate

CC

ΒY By Lara Djelevic

Mohr Method for Cl⁻ determination

• Relies on K_{sp} differences for two insoluble silver salts

 $\begin{array}{ll} Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s) & (titration rxn) \\ 2Ag^{+}(aq) + CrO_{4}^{2-}(aq) \rightarrow Ag_{2}CrO_{4}(s) & (indicator rxn) \end{array}$

- AgCl is less soluble than Ag_2CrO_4 so it will precipitate first
- Ag₂CrO₄ is **brick red in color** so a color change is observed at the endpoint

The problem should be pay attention to:

\star The consumption of the indictor : **5** x **10**⁻³ **mol/L**.

If the concentration of the K_2CrO_4 is **too high**, the end point is advance, result is low

If the concentration of the K_2CrO_4 is **too low**, the end point is delay ,result is high $.K_2CrO_4$ exert titration produce positive error, the measured concentration is low, it need a blank test.

This method is to determine Cl^{-} by titrating with Ag⁺ using back titration. First, Cl^{-} is precipitated by excess standard AgNO₃ (known quantity).

 $Ag^{+}(aq) (excess) + Cl^{-}(aq) \rightarrow AgCl (s)$

The precipitate is isolated and the excess Ag^+ is titrated with standard thiocyanate (KSCN) solution in the presence of Fe^{3+} .

 $Ag^{+}(aq) + SCN^{-}(aq) = AgSCN(s)$

After all of the Ag⁺ has been consumed, the SCN⁻ reacts with Fe^{3+} to form a red complex.

$$Fe^{3+} + SCN^{-} = Fe(SCN)^{2+}$$

The indicator system is very sensitive and usually good results are obtained.

Problem 1: The end point slowly fades because AgCl is more soluble than AgSCN. The AgCl slowly dissolves and is replaced by AgSCN.

This problem can be overcome by :

- Filter off the solid AgCl and only the Ag⁺ left in the filtrate.
- Add a few mL of $C_6H_5NO_2$ with the AgCl precipitate and shake.

Problem 2: Possibility of Fe^{3+} to hydrolyze to form $Fe(OH)_3$ under alkaline conditions.

This problem can be overcome by :

• Perform titration under slightly acidic conditions.

Endpoints for Argentometric Titrations

Chemical method for silver analyses

<u>Volhard's method</u> using thiocyanate , CNS⁻, as titrant.

Iron (III) is the indicator as it forms a red complex ion with thiocyanate , CNS⁻, Fe (CNS) ²⁺

The method can be adapted to Chloride analyses.

AgNO₃ is added in excess. The AgCl precipitate is often filtered off. Then the excess Ag⁺ backtitrated with thiocyanate , CNS⁻.

Iron (III) acts as the indicator as above.

http://ocw.ump.edu.my/course/view.php?id=467

SEVERAL PRECIPITATION TITRATION -FAJANS METHOD-

Before

equivalence

point

equivalence

point

After

equivalence

point

- Anion dyes (fluorescein and its derivatives adsorption indicator) adsorbed on AgCl surface
- Excess Ag⁺ react with $FI^- \rightarrow$ reddish preciptate

- Strong acids of other fluorescein derivatives (eosin) can be used in acidic pH.
- Simple method with reproducible results.

Precipitation Titration by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Universiti

Malaysia

SEVERAL PRECIPITATION TITRATION -FAJANS METHOD-

Endpoints for Argentometric Titrations

Chemical

Adsorption – Fajan's method

A **red dye** attaches to the silver salt, on the surface of the analyte precipitate particle.

This happens only when the silver ion Ag⁺ is in excess, i.e just after the equivalence point.

LIMITATION OF PRECIPITATION TITRATION

□ A few number of ions such as halide ions (Cl⁻, Br⁻, I⁻) can be titrated by precipitation method.

□Co-precipitation may be occurred.

□ It is very difficult to detect the end point.

APPLICATIONS OF PRECIPITATION TITRATION

- 1. The determination of the chlorine contained in natural water : Mohr and Volhard Method
- 2. The determination of Silver contained in silver alloy: Volhard method
- 3. The determination of halogen contained in organic compounds such as food, organochlorine pesticides, used Volhard method. $C_6H_6Cl_6 + 3OH^- = C_6H_6Cl_3 + 3Cl^- + 3H_2O$
- The determination of sodium chloride contained in MSG: Mohr method, no more than 20% glutamate more than 95% grade level glutamate more than 80% second level

APPLICATIONS OF PRECIPITATION TITRATION

- 5. The precipitation can be observed when the <u>salt</u> is occurred and <u>indicators</u> is used to see the pH range: mostly used for neutralization reactions
- 6. Precipitation titration is used for such reaction when the titration is not recognized by changing the colors. during the reaction a salt is precipitated as the titration is completed.
- 7. Precipitation titration is an Amperometric titration in which the potential of a suitable <u>indicator</u> electrode is <u>measured</u> during the titration.
- 8. It is used for determination of chloride by Mohr's Method using Silver nitrate.

PRECIPITATION TITRATION CURVE INVOLVING SILVER ION

- The most common method of determining the halide ion concentration of aqueous solution
- To construct titration curve, 3 types of calculation are required, each of which corresponds to a distinct stage in the

reaction:

Pre-equivalence Equivalence Post-equivalence

Universiti Malaysia PAHANG

APPLICATIONS OF STANDARD SILVER NITRATE SOLUTIONS

TABLE 13-3

Typical Argentometric Precipitation Methods						
Substance Being Determined	End Point	Remarks				
AsO ₄ ³⁻ , Br ⁻ , I ⁻ , CNO ⁻ , SCN ⁻	Volhard	Removal of silver salt not required				
CO ₃ ²⁻ , CrO ₄ ²⁻ , CN ⁻ , Cl ⁻ , C ₂ O ₄ ²⁻ , PO ₄ ³⁻ , S ²⁻ , NCN ²⁻	Volhard	Removal of silver salt required before back-titration of excess Ag ⁺				
BH ₄ ⁻	Modified Volhard	Titration of excess Ag^+ following $BH_4^- + 8Ag^+ + 8OH^- \rightarrow 8Ag(s) + H_2BO_3^- + 5H_2O$				
Epoxide	Volhard	Titration of excess Cl ⁻ following hydrohalogenation				
K ⁺	Modified Volhard	Precipitation of K^+ with known excess of $B(C_6H_5)_4^-$, addition of excess Ag^+ giving $AgB(C_6H_5)_4(s)$, and back-titration of the excess				
Br [−] , Cl [−]	$2Ag^{+} + CrO_{4}^{2-} \rightarrow Ag_{2}CrO_{4}(s)$ red	In neutral solution				
Br ⁻ , Cl ⁻ , I ⁻ , SeO ₃ ²⁻	Adsorption indicator					
$V(OH)_4^+$, fatty acids, mercaptans	Electroanalytical	Direct titration with Ag ⁺				
Zn ²⁺	Modified Volhard	Precipitation as ZnHg(SCN) ₄ , filtration, dissolution in acid addition of excess Ag ⁺ , back-titration of excess Ag ⁺				
F ⁻	Modified Volhard	Precipitation as PbClF, filtration, dissolution in acid, addition of excess Ag ⁺ , back-titration of excess Ag ⁺				

CALCULATING THE TITRATION CURVE

Calculate the titration curve for the titration of 50.0 mL of 0.0500 M NaCl with 0.100 M AgNO₃.

$$Ag^{+}(aq) + Cl^{-}(aq) \rightleftharpoons AgCl(s)$$

When the equilibrium constant of the reaction is so large:

$$K = (K_{sp})^{-1} = (1.8 \times 10^{-10})^{-1} = 5.6 \times 10^{9}$$

assume that Ag⁺ and Cl⁻ react completely.

Step 1: Calculate the volume of $AgNO_3$ needed to reach the equivalence point. Tips: shows that we need 25.0 mL of Ag⁺ to reach the equivalence point.

Step 2: Calculate pCl before the equivalence point (determine the concentration of unreacted NaCl). Tips: Before the equivalence point the titrand, Cl^{-} , is in excess. The concentration of unreacted Cl^{-} after adding 10.0 mL of Ag^{+} which corresponds to a pCl of 1.60.

Step 3: Calculate pCl at the equivalence point (use K_{sp} for AgCl to calculate the concentration of Cl⁻). At the titration's equivalence point, concentrations of Ag⁺ = Cl⁻. To calculate the concentration of Cl⁻ we use the K_{sp} expression for AgCl; thus solving for *x* gives [Cl⁻] as 1.3×10^{-5} M, or a pCl of 4.89.

Step 4: Calculate pCl after the equivalence point (calculate the concentration of excess $AgNO_3$ and then calculate the concentration of Cl⁻ using the K_{sp} for AgCl).

After the equivalence point: calculate the concentration of excess Ag⁺ and then use the K_{sp} expression to calculate the concentration of Cl⁻. For example, after adding 35.0 mL of titrant or a pCl of 7.81. Additional results for the titration curve.

Volume of AgNO ₃ (mL)	pCl	Volume of AgNO ₃ (mL)	pCl
0	1.30	30	7.54
5	1.44	35	7.82
10	1.60	40	7.97
15	1.81	45	8.07
20	2.15	50	8.14

Volume of AgNO₃

Titration curve for the titration obtained.

Editor: Wan Norfazilah Wan Ismail

Author: Siti Maznah Kabeb

Industrial Chemistry Programme Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

