ANALYTICAL CHEMISTRY

Acid Base Titration

by
Wan Norfazilah Wan Ismail
Faculty of Industrial Sciences \& Technology norfazilah@ump.edu.my

Chapter Description

- Expected Outcomes
- Understand and state the principles of titrations.
- Define and identify Arrhenius and Brönsted-Lowry acids and bases
- Define and identify the conjugate of a given acid or base
- Describe and apply the titration curves, calculations and indicators to solve the problem regarding acid base titration.

Contents

- Acid-Base Theories
- Autopyrolysis of Solvents
- Acidity of Solution
- Acid-Base Titration
- End Point Detection
- Indicators for titration

APPLICATIONS OF NEUTRALIZATION TITRATIONS

- General flow:
- Preparation of standard solution (acid/base) \rightarrow Standardization of solution with primary standards \rightarrow Titration \rightarrow Results
Applications:
- Elemental analysis
- Determination of inorganic substances
- Determination of organic functional groups
- Determination of salts

ACID - BASE THEORIES

Arrhenius Theory (Nobel Prize 1894)

- Acid: any species that can produce hydroxonium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$abbreviated H^{+}or proton.
- Base: produce hydroxyl ions (OH^{-}) in aqueous solution.
- Does not include acids or bases that can not produce H^{+}and OH^{-} ions.
- Brönsted - Lowry Theory
- Acid = proton $\left(\mathrm{H}^{+}\right)$donor
- Base = proton acceptor
- Amphoteric substance $=$ function as an acid or a base

Lewis Theory

- Acid = accept a pair of electrons
- Base = donate a pair of electrons

Strong electrolyte : completely dissociated.
Weak electrolyte : partially dissociated.

Strong acid	Weak acid
HCl	$\mathrm{CH}_{3} \mathrm{COOH}$
HBr	$\mathrm{H}_{2} \mathrm{CO}_{3}$
HI	HOCN
HNO_{3}	HCN
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HF
HClO_{4}	$\mathrm{H}_{2} \mathrm{~S}$
	HOOH
	HOCl
	$\mathrm{HON=O}$
	HOOCCOOH
	$\mathrm{H}_{3} \mathrm{PO}_{4}$
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

Strong base	Weak base
NaOH	NH_{3}
KOH	$\mathrm{N}_{2} \mathrm{H}_{4}$
LiOH	$\mathrm{CH}_{3} \mathrm{NH}_{2}$
RbOH	
CsOH	
$\mathrm{Sr}(\mathrm{OH})_{2}$	
$\mathrm{Ba}(\mathrm{OH})_{2}$	
$\mathrm{Ca}(\mathrm{OH})_{2}$	
$\mathrm{Mg}(\mathrm{OH})_{2}$	

Source: Christian G.D., Dasgupta, P., Schug, K. (2014) Analytical Chemistry. Wiley-VCH

AUTOPYROLYSIS OF SOLVENTS

Autopyrolysis : self-ionization - acts as both an acid and a base.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{w}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2} \\
\mathrm{~K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

- Protic solvent : a solvent that involves the transfer of $\mathrm{H}+$ from one molecule to another. Can undergo self-ionization. i.e. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

$$
2 \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

AUTOPYROLYSIS OF SOLVENTS

- Polyprotic acids and bases: compounds that can donate or receive more than one proton. i.e. phosphoric acid, phosphate

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{a 1}=7.11 \times 10^{-3} \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{a 2}=6.32 \times 10^{-8} \\
\mathrm{HPO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{-3}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{a 3}=7.1 \times 10^{-13}
\end{array}
$$

Aprotic solvent : a solvent that does not have an acidic proton. i.e. $\mathrm{CH}_{3} \mathrm{CN},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$

ACIDITY OF SOLUTIONS

For an aqueous solution of 0.10 M HCl :

\[

\]

Acidity is related to pH scale:

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& p O H=\log \left[O H^{-}\right] \\
& p K_{a}=-\log K_{a}
\end{aligned}
$$

Because $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}, \mathrm{pH}$ is related to pOH by $\mathrm{pH}+\mathrm{pOH}=14$

IONIZATION OF STRONG ACIDS \& BASES

- 100\% ionization
- Example: calculate the pH of a $2.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-3}} \\
& \mathrm{pH}=-\log \left(2.0 \times 10^{-3}\right)=2.70
\end{aligned}
$$

EXAMPLE

What is the pH of a solution containing 0.10 M NaOH ?
The final concentrations, $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{OH}^{-}\right]=0.10 \mathrm{M}$

$$
K_{w}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$$
\left[\mathrm{H}^{+}\right]=K_{w} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 0.10=1.0 \times 10^{-13} \mathrm{M}
$$

$$
p H=-\log 1.0 \times 10^{-13}=13
$$

@

$$
\begin{gathered}
p O H=-\log \left[\mathrm{OH}^{-}\right] \quad p H+p O H=14 \\
p O H=-\log [0.10]=1 \\
p H=14-1=13
\end{gathered}
$$

WEAK ACID

The dissociation of weak acid

$$
\begin{aligned}
H A & \rightleftharpoons H^{+}+A^{-} \\
\text {(weak acid) } & \text { (conjugate base) }
\end{aligned}
$$

HA (conjugate acid) and A- (conjugate base) are conjugate acid-base pair.

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

EXAMPLE

A solution of acid HA (0.030 M) was found to have $\left[\mathrm{H}^{+}\right]=6.5 \times 10^{-4} \mathrm{M}$. Calculate the K_{a} value for the acid.

$$
\begin{gathered}
H A \rightleftharpoons H^{+}+A^{-} \\
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\
{\left[H^{+}\right]=\left[A^{-}\right]=6.5 \times 10-4 M} \\
{\left[H^{+}\right]=0.030 M-6.5 \times 10-4 M=2.9 \times 10^{-2} M} \\
K_{a}=\frac{\left(6.5 \times 10^{-4}\right)\left(6.5 \times 10^{-4}\right)}{2.9 \times 10^{-2}}=1.5 \times 10^{-5}
\end{gathered}
$$

WEAK BASE

For every weak acid, there is always an associated weak base.

$$
H A \rightleftharpoons H^{+}+A^{-} \quad\left(K_{a} \text { has a very small value }\right)
$$

The anion A- acts as a weak base. This anion can undergo hydrolysis:
$\underset{\text { (conjugate base) }}{\mathrm{A}^{-}} \underset{\text { (weak acid) }}{\mathrm{H}_{2} \mathrm{O}} \quad \rightleftharpoons \underset{\text { (weak acid) }}{\mathrm{AH}} \quad+\underset{\text { (conjugate base) }}{\mathrm{OH}^{-}}$

$$
K_{h}=K_{b}=\frac{[H A]\left[\mathrm{OH}^{-}\right]}{\left[A^{-}\right]}
$$

IONIZATION OF WEAK ACIDS \& BASES

Partially ionized

Initial
Equilibrium

HA	$\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$	
C_{0}	0	0
$\mathrm{C}_{0}-\mathrm{C}_{1}$	C_{1}	C_{1}

$\mathrm{K}_{\mathrm{a}}=$ acidity constant

Assuming

1. Contribution of $\left[\mathrm{H}^{+}\right]$from water is negligible
2. $\mathrm{K}_{\mathrm{a}} \ll 1, \mathrm{C}_{1} \ll \mathrm{C}_{0} \rightarrow[\mathrm{HA}]=\mathrm{C}_{0}-\mathrm{C}_{1} \approx \mathrm{C}_{0}$
$\mathrm{K}_{\mathrm{a}}=\mathrm{C}_{1}{ }^{2} / \mathrm{C}_{0}$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \mathrm{C}_{0}\right)$

$\mathrm{B} \quad \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-}$

$K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{B}$

Assuming

1. Contribution of $\left[\mathrm{OH}^{-}\right]$from water is negligible
2. $\mathrm{K}_{\mathrm{b}} \ll 1, \mathrm{C}_{1} \ll \mathrm{C}_{0} \rightarrow[\mathrm{~B}]=\mathrm{C}_{0}-\mathrm{C}_{1} \approx \mathrm{C}_{0}$
$\mathrm{K}_{\mathrm{b}}=\mathrm{C}_{1}{ }^{2} / \mathrm{C}_{0}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{b}} \mathrm{C}_{0}\right)$

Initial
Equilibrium $\mathrm{C}_{0}-\mathrm{C}_{1}$
C_{1}
C_{1}

IONIZATION OF WEAK ACIDS \& BASES

- Partially ionized
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$

Initial
Equilibrium

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{H A} \quad \mathrm{~K}_{\mathrm{a}}=\text { acidity constant }
$$

Assuming

1. Contribution of $\left[\mathrm{H}^{+}\right]$from water is negligible
2. $\mathrm{K}_{\mathrm{a}} \ll 1, \mathrm{C}_{1} \ll \mathrm{C}_{0} \rightarrow[\mathrm{HA}]=\mathrm{C}_{0}-\mathrm{C}_{1} \approx \mathrm{C}_{0}$
$\mathrm{K}_{\mathrm{a}}=\mathrm{C}_{1}{ }^{2} / \mathrm{C}_{0}$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \mathrm{C}_{0}\right)$

IONIZATION OF WEAK ACIDS \& BASES

$$
p H=p k_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

$$
\left.\left[\mathrm{OH}^{-}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}\right) * \mathrm{C}_{0}\right)
$$

$$
\left.\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}\right) * \mathrm{C}_{0}\right)
$$

NEUTRAL IONS

- Do not reacts with water to form H^{+}or OH^{-}.
- Are not affected by pH .
- Not many, neutral ions are only from strong acid or strong base.

Species	Neutral	
Anion	Cl^{-}	$\mathrm{NO}_{3}{ }^{-}$
	Br^{-}	$\mathrm{ClO}_{4}{ }^{-}$
	I^{-}	$\mathrm{SO}_{4}{ }^{2-}$
Cation	Li^{+}	Ca^{2+}
	Na^{+}	Ba^{2+}
	K^{+}	

- When an acid and a base react, they neutralize each other to form a salt.

PAHANG

STRONG ACID VS WEAK BASE

Acid Base Titration
by Wan Norfazilah Wan Ismail
http://ocw.ump.edu.my/course/view.php?id=467

WEAK ACID VS STRONG BASE

Acid Base Titration
by Wan Norfazilah Wan Ismail
http://ocw.ump.edu.my/course/view.php?id=467

WEAK ACID VS WEAK BASE

volume of acid added $\left(\mathrm{cm}^{3}\right)$
http://ocw.ump.edu.my/course/view.php?id=467

STANDARD SOLUTIONS

- Strong acids or strong bases
- Complete reaction with analyte
- Sharp end points
- Never use weak acids \& bases as standard reagents (incomplete reaction)
- Standard solutions of acids
- Dilution of concentrated sulfuric, hydrochloric or perchloric acid.
- Standard solutions of bases
- prepared from solid sodium or potassium and occasionally barium hydroxides. The concentrations of these bases must be established by standardization.

TITRATION OF STRONG ACIDS AND

 STRONG BASES- A strong acid strong base titration curve has a large end point break.
Figure shows the titration curve for 100 mL of 0.1 M HCl versus 0.1 M NaOH .

100 mL 0.1 M HCl vs. 0.1 M NaOH

As the concentrations of acid and titrant decrease, the end point break decreases.

So the selection of indicator becomes more critical.

Dependence of the magnitude of end-point bread on concentration. The concentrations of acid and titrant are the same.

Acid Base Titration
by Wan Norfazilah Wan Ismail
http://ocw.ump.edu.my/course/view.php?id=467

Titration curve for 100 mL of 0.1 M NaOH versus 0.1 M HCl .

STRONG ACID - STRONG BASE TITRATIONS

100 mL 0.1 M HCl vs. 0.1 M NaOH

Approaching the equivalence point, the concentration of $\left[\mathrm{H}^{+}\right]$gets very small small change in the concentration of $\left[\mathrm{H}^{+}\right]$

Thus, near the equivalence point, greater change in pH observed

This behavior make it easy by just using an indicator dye to show when we are
approaching the equivalence point

The indicator may change color at close to pH 7.0

TITRATION CURVES OF WEAK ACIDS WITH A STRONG BASE

- At the equivalence point, the solution is slightly basic with the present of salt because the salt contains the conjugate base, which is able to recombine with a proton.
o After one-half: $[H A]=[A-]$.
- At this point the $\mathrm{pH}=p K$ a.
- Titration profile is relatively flat around the $p H=p K_{a}$ point.
- This means that within this region the pH is not changing much upon the addition of small amounts of base. This is the definition of a "buffered" solution, and explains why the most effective buffering is at a pH value equal to the pKa .
0.05 L of 0.1 M Weak Acid Titrated with 0.1 M NaOH

Source: Dr. Michael Blaber, 2000

FINDING EQUIVALENCE POINT

FINDING EQUIVALENCE POINT

Weak Acid Titration Curve

FINDING EQUIVALENCE POINT

FINDING EQUIVALENCE POINT

Weak Acid Titration Curve

FINDING EQUIVALENCE POINT

Weak Acid Titration Curve

FINDING EQUIVALENCE POINT

Weak Acid Titration Curve

FIND THE MID POINT

FIND THE MID POINT

FIND THE MID POINT

Weak Acid Titration Curve

FIND THE MID POINT

FIND THE MID POINT

Weak Acid Titration Curve

CHOOSING INDICATORS FOR TITRATIONS

- Choose an indicator which changes colour as close as possible to that equivalence point.
- That varies from titration to titration.

Some Important Acid/Base Indicators

Common Name	Transition Range, pH	$\mathrm{p} \boldsymbol{K}_{\mathrm{a}}^{*}$	Color Change \dagger	Indicator Type \ddagger
Thymol blue	$1.2-2.8$	$1.65 \S$	$\mathrm{R}-\mathrm{Y}$	1
	$8.0-9.6$	$8.96 \S$	$\mathrm{Y}-\mathrm{B}$	
Methyl yellow	$2.9-4.0$		$\mathrm{R}-\mathrm{Y}$	2
Methyl orange	$3.1-4.4$	$3.46 \S$	$\mathrm{R}-\mathrm{O}$	2
Bromocresol green	$3.8-5.4$	$4.66 \S$	$\mathrm{Y}-\mathrm{B}$	1
Methyl red	$4.2-6.3$	$5.00 \S$	$\mathrm{R}-\mathrm{Y}$	2
Bromocresol purple	$5.2-6.8$	$6.12 \S$	$\mathrm{Y}-\mathrm{P}$	1
Bromothymol blue	$6.2-7.6$	$7.10 \S$	$\mathrm{Y}-\mathrm{B}$	1
Phenol red	$6.8-8.4$	$7.81 \S$	$\mathrm{Y}-\mathrm{R}$	1
Cresol purple	$7.6-9.2$		$\mathrm{Y}-\mathrm{P}$	1
Phenolphthalein	$8.3-10.0$		$\mathrm{C}-\mathrm{R}$	1
Thymolphthalein	$9.3-10.5$		$\mathrm{C}-\mathrm{B}$	1
Alizarin yellow GG	$10-12$		$\mathrm{C}-\mathrm{Y}$	2

*At ionic strength of 0.1.
$\dagger \mathrm{B}=$ blue; $\mathrm{C}=$ colorless; $\mathrm{O}=$ orange; $\mathrm{P}=$ purple; $\mathrm{R}=$ red; $\mathrm{Y}=$ yellow.
\ddagger (1) Acid type: $\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{In}^{-}$; (2) Base type: $\mathrm{In}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{InH}^{+}+\mathrm{OH}^{-}$.
§For the reaction $\mathrm{InH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{In}$.
© 2004 Thomson - Brooks/Cole

pH transition range $=\mathrm{pK}_{\mathrm{a}} \pm 1$.

We select an indicator with a pK_{a} near the equivalence point pH ．

Indicator

Cresol red ---------- red \square yellow
Bromphenol blue-----------yellow \square blue
Methyl orange------------- red \square yellow
Bromcresol green ------------ yellow \square blue
Methyl red ---------------- red \square yellow
Methyl purple---------------- purple \square green
Bromothymol blue ----------------- yellow \square blue
Litmus - - - - - - - - - - - - - - - - - - red \square blue
Cresol red ---------------------- yellow \square red
Thymol blue---------- red \square yellow - - - yellow \square blue
Phenolphthalein-ーーーーーーーーーーーーーーーーーーーー colorless \square red violet
Thymolphthalein------------------------- colorless \square blue
Alizarin yellow R-ーーーーーーーーーーーーーーーーーーーーーーーーーー yellow \square red
pH transition ranges and colors of some common indicators．
©Gary Christian， Analytical Chemistry，6th Ed．（Wiley）

ACID-BASE INDICATORS

- An
acid/base indicator is a weak organic acid or a weak organic base whose undissociated form differs in color from its conjugate form.

ACID/BASE INDICATORS

- acid-type indicator, HIn :
$\stackrel{\mathrm{HIn}}{ } \quad \rightleftharpoons \quad \mathrm{In}^{-}+\mathrm{H}^{+}$
Colour A colour B
$\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ acid color
- base-type indicator, In :

$$
\begin{aligned}
& \mathrm{In}+\mathrm{H}_{2} \mathrm{O} \\
& \text { base color }
\end{aligned} \rightleftharpoons \quad \begin{aligned}
& \mathrm{InH}^{+}+\mathrm{OH}^{-} \\
& \text {acid color }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{In}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \quad \text { base color }
\end{aligned}
$$

In acidic solution, equilibrium \leftarrow, colour A In basic solution, equilibrium \rightarrow, colour B

Editor: Wan Norfazilah Wan Ismail

Author: Siti Maznah Kabeb

Industrial Chemistry Programme

Faculty of Industrial Sciences \& Technology Universiti Malaysia Pahang

