Analytical Chemistry

Chapter 6, 7 \& 8

by
Wan Norfazilah Wan Ismail
Faculty of Industrial Sciences \& Technology norfazilah@ump.edu.my

Activity 8

1. $\quad 1.00$ mole of ethanoic acid was allowed to react with 0.5 moles of ethanol. At equilibrium, 0.58 moles of acid was remaining. Calculate K_{c} for this reaction.

Activity 8

2. Equimolar amounts of hydrogen and iodine were allowed to reach equilibrium.

$$
H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)
$$

If 80% of the hydrogen can be converted to hydrogen iodide, calculate K_{p}.

Activity 8

3. Magnesium oxide is only slightly soluble in water, making it difficult to titrate directly.

A student was required to use a back titration to determine the purity of a sample of magnesium oxide that weighed 4.06 g . This sample was completely dissolved in $100 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid (a known excess)

The excess acid required 19.70 cm 3 of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide for neutralisation. Calculate the percentage purity of magnesium oxide.

Activity 8

4. To determine the amount of magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ in an impure ore, a 1.5419 g sample is dissolved in concentrated HCl , giving a mixture of Fe^{2+} and Fe^{3+}.

After adding HNO_{3} to oxidize Fe^{2+} to Fe^{3+} and diluting with water, Fe^{3+} is precipitated as $\mathrm{Fe}(\mathrm{OH})_{3}$ by adding NH_{3}.

Filtering, rinsing and igniting the precipitate provides 0.8525 g of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Calculate the $\% \mathrm{w} / \mathrm{w} \mathrm{Fe}_{3} \mathrm{O}_{4}$ in the sample.

Fe: $55.8 \mathrm{~g} / \mathrm{mol}, \mathrm{O}: 16 \mathrm{~g} / \mathrm{mol}, \mathrm{H}: 1 \mathrm{~g} / \mathrm{mol}$

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=467

Activity 8

5. The basicity constant K_{b} for ammonia is 1.75×10^{-5} at $25^{\circ} \mathrm{C}$. (It is only coincidental that this is equal to K_{a} for acetic acid.) Calculate the pH and pOH for a $1.0 \times 10^{-3} \mathrm{M}$ solution of ammonia.

Activity 8

6. Calculate the pH of a solution prepared by mixing 2.0 mL of a strong acid solution of pH 3 and 3.0 mL of strong base of pH 10 .

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=467

Editor: Wan Norfazilah Wan Ismail

Author: Siti Maznah Kabeb

Industrial Chemistry Programme

Faculty of Industrial Sciences \& Technology Universiti Malaysia Pahang

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=467

