

ANALYTICAL CHEMISTRY

Gravimetric Analysis

by Wan Norfazilah Wan Ismail Faculty of Industrial Sciences & Technology norfazilah@ump.edu.my

Gravimetric Analysis by Wan Norfazilah Wan Ismail <u>http://ocw.ump.edu.my/course/view.php?id=467</u>

Communitising Technology

Chapter Description

- Expected Outcomes
 - Understand and state the principles of gravimetric analysis
 - Describe the gravimetric analysis involving precipitation reactions
 - State the requirement to remove potentially interfering species prior to the gravimetric measurement

Contents

- Steps in Gravimetric Analysis
- Precipitation Agents
- Mechanism of Precipitation
- Impurities of Particles
- Ways to Minimize Impurities
- Gravimetric Calculations
- Volatilization and Particulate Gravimetry

GRAVIMETRIC METHOD

- Gravimetric analysis is a quantitative determination of the amount of analyte through a precipitation process, precipitate isolation, and determination of isolated product weight.
- Gravimetry = analytical methods that measure the mass or mass changes.
- Using an analytical balance (highly accurate instrument with precise data)
- Still being used in industry and environmental research

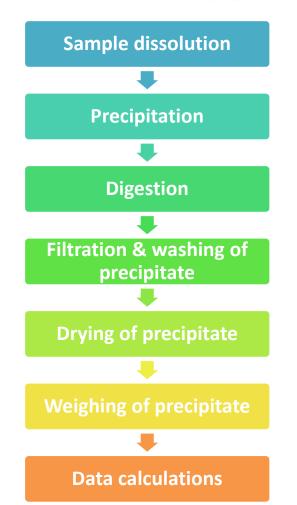
TYPES OF GRAVIMETRIC METHODS

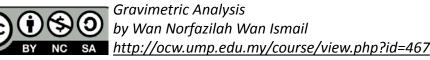
Gravimetric methods	Definition	Application
Precipitation gravimetry	A gravimetric method in which the signal is the mass of a precipitate	Suspended solid: determination of CI^{-} by $AgNO_{3}$ precipitating to $AgCI$ (filtration)
Electrogravimetry	A gravimetric method in which the signal is the mass of an electrodeposit on the cathode or anode in an electrochemical cell	Aqueous ion: determination of Pb^{2+} by oxidizes to PbO_2 and deposited on Pt anode (chemical converting)
Volatilization gravimetry	A gravimetric method in which the loss of a volatile species gives rise to the signal (remove the volatile species)	Moisture: determination of water in food content by heat or thermal or chemical energy (heating)
Particulate gravimetry	A gravimetric method in which the mass of a particulate analyte is determined following its separation from its matrix	Suspended solid: determination of solid that can be separated from the sample (filtration or extraction)

PRECIPITATION GRAVIMETRY

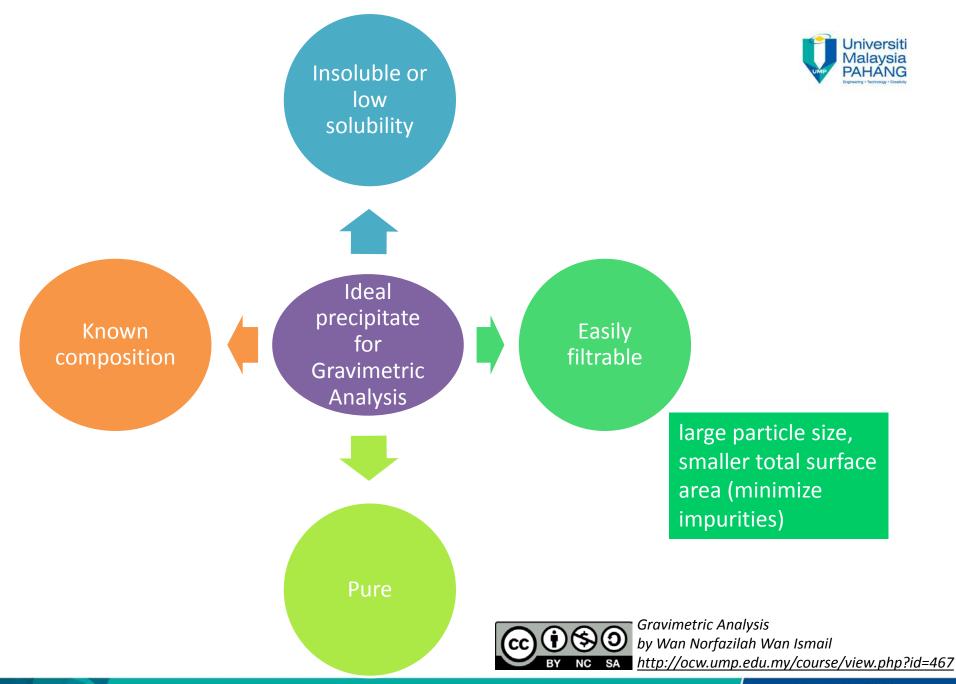
- Appearance of insoluble compounds in a solution containing our analyte when a precipitating reagent/precipitant is added.
- The precipitate is then: filtered and washed (impurities removal)

weighed





STEPS IN GRAVIMETRIC ANALYSIS


Gravimetric Analysis

- 1. Dissolve a sample after weighing.
- 2. A precipitating agent with excess amount is added to this solution.
- 3. The resulting precipitate is filtered, dried (or ignited) and weighed.
- 4. Determine the amount of the original ion from the mass of the precipitate (known composition).
- 5. Stoichiometry is important (write down the chemical equation!).

TYPES OF PRECIPITATING REAGENTS

- **1. <u>Selective</u>** (react with a few analytes)
 - Example: AgNO₃
 - Ag⁺ + Halides $(X^{-}) \rightarrow AgX_{(s)}$
 - $Ag^+ + CNS^- \rightarrow AgCNS_{(s)}$
- 2. <u>Specific</u> (react with 1 analyte only)
 - Example: Dimethylglyoxime (DMG) that precipitates only Ni²⁺ from alkaline solutions
 - 2 DMG + Ni²⁺ \rightarrow Ni(DMG)_{2(s)} + 2 H⁺

SOLUBILITY PRODUCT CONSTANTS OF SELECTED SLIGHTLY SOLUBLE SALTS

Salt	$K_{ m sp}$	Solubility, s (mol/L)
PbSO ₄	$1.6 imes 10^{-8}$	$1.3 imes 10^{-4}$
AgCl	$1.0 imes 10^{-6}$	$1.0 imes 10^{-5}$
AgBr	4×10^{-13}	6×10^{-7}
AgI	1×10^{-16}	1×10^{-8}
Al(OH) ₃	2×10^{-32}	$V_{sp}^{K_{sp}}$ 5 × 10 ⁻⁹
Fe(OH) ₃	4×10^{-38}	$2 imes 10^{-10}$
Ag_2S	$2 imes 10^{-49}$	$4 imes 10^{-17}$
HgS	4×10^{-53}	$6 imes 10^{-27}$

Gravimetric Analysis by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology

SOLUBILITY RULES

ALMOST (always SOLUBLE)

- Nitraes (NO_3^-) Acetates $(C_2H_3O^-)$ Group 1 (Li⁺, Na⁺, K⁺, etc)
- Sulfates (SO₄²⁻) Ammonium (NH₄⁺) Group 17 (F⁻, Cl⁻, Br⁻, etc)

EXCEPTIONS (2 groups)

- 1. "PMS"
 - $P \rightarrow Pb^{2+}$ (lead)
 - $M \rightarrow Mercury$ (Hg_2^{2+})
 - $S \rightarrow Silver (Ag^+)$
- 2. Castro Bear
 - Ca²⁺, Sr²⁺, Ba²⁺

TYPES OF PRECIPITATE FORMED

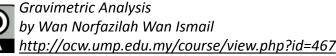
Colloidal suspensions

- 10⁻⁷ to 10⁻⁴ cm diameter
- Normally remain suspended
- Very difficult to filter

Crystalline suspensions

- > tenths of mm diameter
- Normally settle out spontaneously
- Readily filterable

FACTORS THAT DETERMINE THE PARTICLE SIZE OF PRECIPITATES



Particles size of precipitate influenced by:

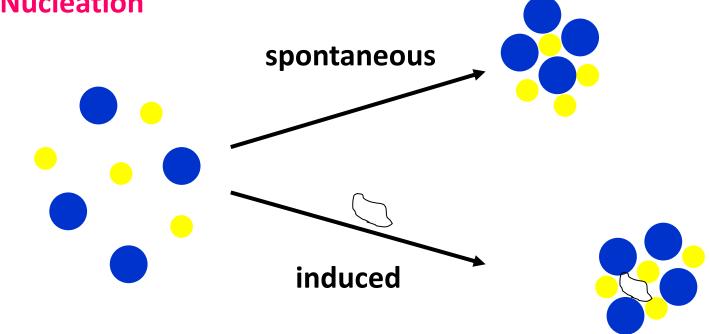
- Precipitate solubility (S)
- Temperature \longrightarrow Increase temp to increase solubility
- Reactant concentration (Q)
- Rate at which reactant mixed —
- pH

Large, easily filtered crystal of calcium oxalate – mildly acidic environment

Slow addition of the precipitating agent with good stirring

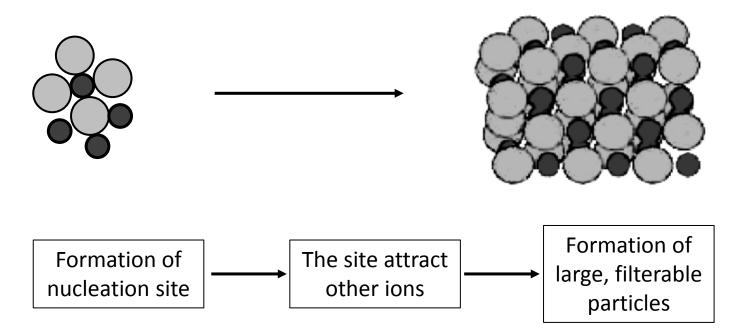
MECHANISM OF PRECIPITATE FORMATION

Nucleation

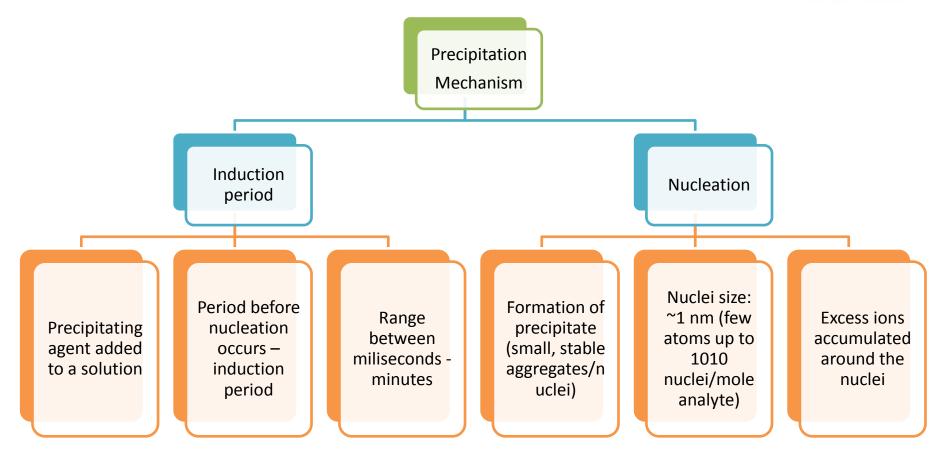

- Individual ions/atoms/molecules coalesce to form "nuclei" (join together to give a stable solid)
 - If nucleation predominates, a large number of small particles result

Particle growth

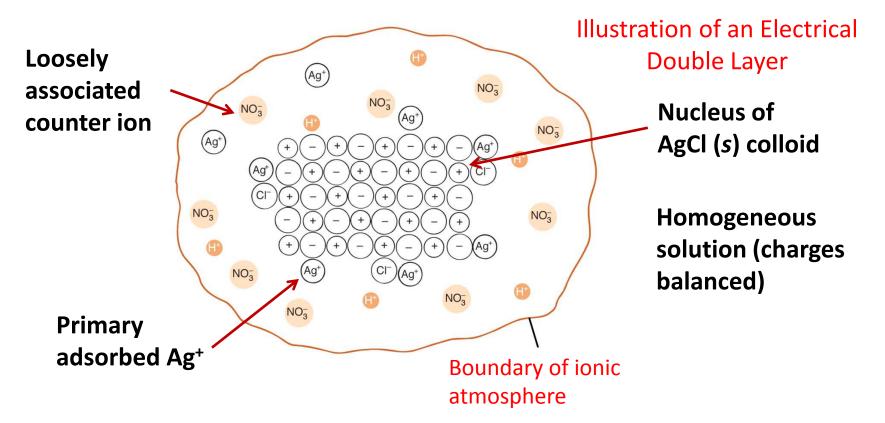
- Ions/atoms/molecules are added to the nucleus to form larger particles
 - If particle growth predominates, a smaller number of large particles result


Induced nucleation involves grain growth initiated by 'seed' particles (i.e. dust, glass fragment, other crystals ...)

MECHANISM OF PRECIPITATION


Particle growth

Contaminates are reduced - they don't 'fit in' to the crystal structure.



Mechanism of Precipitation

The region surrounding the particle has a net negative charge because the particle attracts anions and repels cations.

Sources: D.C. Harris (2010) Quantitative Chemical Analysis, 8th edition, W. H. Freeman & Company: New York.

MECHANISM OF PRECIPITATION

- In addition to the colloidal particles of AgCl formation, they grow in the excess of Ag+, NO3- and H+.
- The surface of the particle now has an excess of positive charge adsorption of extra Ag+
- Then, the surface attracts anions and repels cations.
- Both layers of positively charged particles and negatively charged ionic atmosphere are known as the **ELECTRIC DOUBLE LAYER**.

MORE TERMINOLOGY

 Adsorption is a process where a substance is attached to the surface of a solid.

*** While, a**b**sorbtion is a process where a substance is held within the pores.

 electric double layer: a layer of charge absorbed on the particles' surface together with a layer of net opposite charge surrounding the particles in the solution.

COLLOIDAL PRECIPITATES

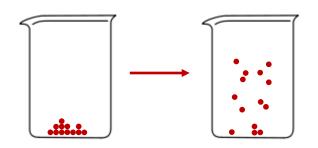
Colloidal Suspension

 Colloidal particles remain suspended due to adsorbed ions giving a net +ve or -ve charge

<u>Coagulation, agglomeration</u>

- Suspended colloidal particles unite to form larger filterable particles inert electrolyte allows closer approach
 - Can be syncronized by adding an electrolyte to the medium, heating, and stirring.

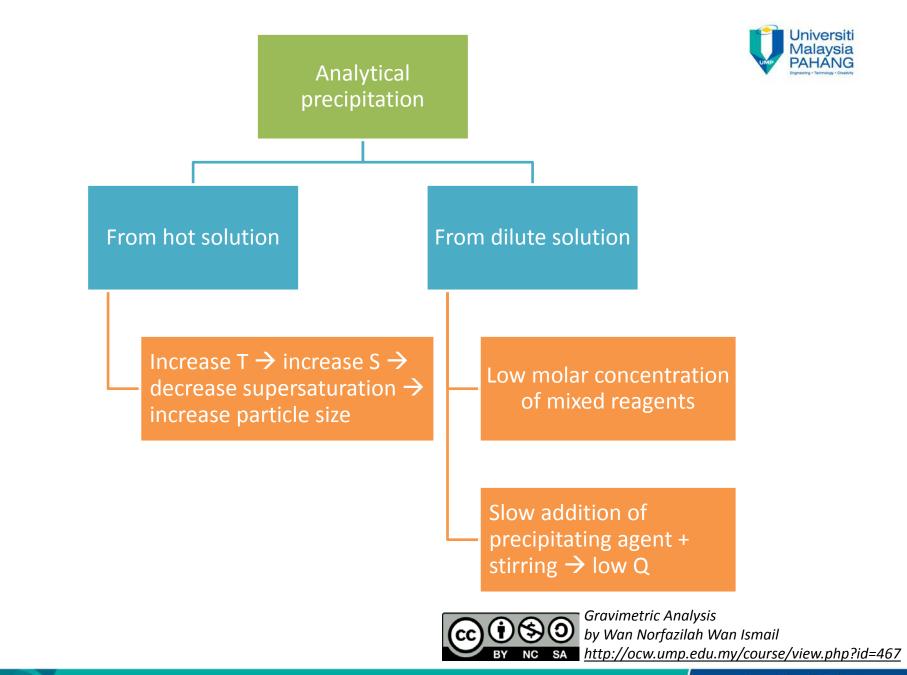
Peptization

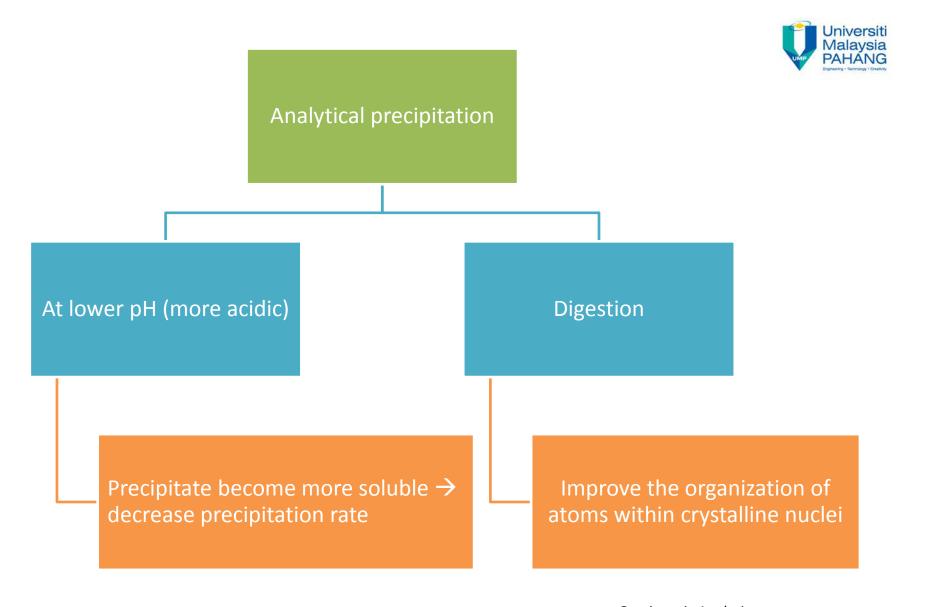

 Re-dissolution of coagulated colloids by washing and removing inert electrolyte

COLLOIDAL PRECIPITATES

- Peptidization
 - A procedure where the precipitate is washed and filtered but part of the precipitate reverts to the colloidal form because supporting electrolyte is gone.
 - Cooling the system with an icewater bath minimizes loss of precipitate due to dissolution

CONDITIONS FOR ANALYTICAL PRECIPITATION




- Saturation = Q S
- Relative supersaturation = (Q S) / S Q: solute concentration S: solute solubility

For best possible results: Q should be as low as possible and S should be relatively large.

- $Q \uparrow, S \downarrow$: high supersaturation \rightarrow fine particles
- $Q \downarrow, S \uparrow$: low supersaturation \rightarrow large particles

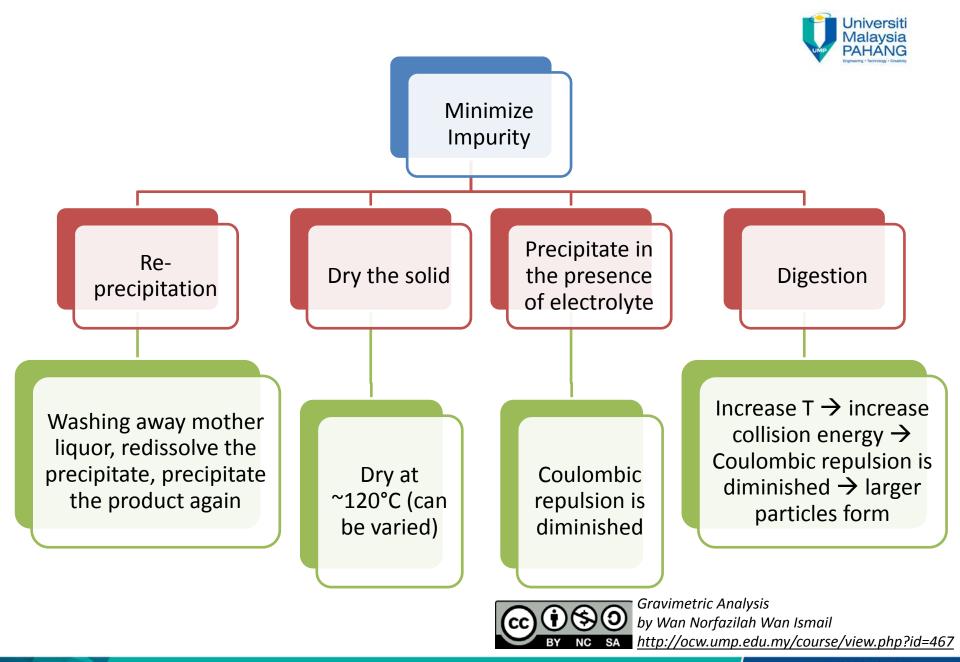
OPTIMUM PRECIPITATION CONDITIONS WITH LOW SUPERSATURATION

- a. Use dilute solutions decrease Q
- b. Add precipitating agent slowly keep Q low
- c. Stirring during the above addition keep Q low
- d. Use hot solution increase solubility
- e. Adjust the pH increase S
- f. Add precipitating agent with excess amount

CO-PRECIPITATION: IMPURITIES IN PRECIPITATES

- Co-precipitation is a process where the impurity is precipitated along with the desired precipitate.
- Example: barium sulfate, hydrous oxides compounds.
- Normally soluble compounds carried down with insoluble precipitate

CO-PRECIPITATION: IMPURITIES IN PRECIPITATES



4 types:

- i. surface adsorption
- ii. Occlusion (pockets of impurities that are trapped inside the rapidly growing cryctal)
- iii. Inclusion (impurity ions replaces an ion in the crystal lattice)
- iv. mechanical entrapment (crystals lie close together during growth)

*** Minimizing coprecipitation: careful precipitation & thorough washing.

GRAVIMETRIC ANALYSIS

- Calculations of analyte content requires knowledge of :
 - Chemistry
 - Stoichiometry
 - Composition of precipitate

GRAVIMETRIC ANALYSIS

• For example: determination of silver or chloride by the formation of AgCl (s).

$$Ag^{+} + Cl^{-} \rightarrow AgCl(s)$$

• Precipitation occurs when the value of $[Ag^+][Cl^-]$ exceeds the solubility product K_{sp} of AgCl (1.8 × 10⁻¹⁰).

GRAVIMETRIC FACTOR

- The precipitate obtained is usually different from the weight of the analyte we want to report.
- The gravimetric factor (GF): weight of analyte per unit weight of precipitate.

 $GF = \frac{FW \text{ analyte } (g/mol)}{FW \text{ precipitate } (g/mol)} \times \frac{a}{b} (mol \text{ analyte}/mol \text{ precipitate})$

GRAVIMETRIC CALCULATION

• Gravimetric Factor (GF):

a = moles of analyte b = moles of precipitate $GF = \frac{a}{b} * \frac{fwt \ analyte}{fwt \ precipitate} \ (g/mol) (g/mol)$

- GF = g analyte / g precipitate
- % analyte = (weight analyte (g)/ weight sample (g)) x 100%
- % (w/w) analyte (g) = ((wt precipitate (g) x GF)/wt sample) x 100%

EXAMPLE 1:

Calculate the grams of analyte per gram of precipitate for the following conversions:

Analyte:	Precipitate:
NaCl	AgCl

$$g \frac{\text{NaCl}}{\text{AgCl}} = \frac{\text{FW NaCl}(\text{g/mol})}{\text{FW AgCl}(\text{g/mol})} \times \frac{1}{1} (\text{mol NaCl/mol AgCl})$$
$$\text{GF} = \frac{1}{1} \times \frac{58.44 \text{ g/mol}}{143.32 \text{ g/mol}} = 0.4078 \text{ g NaCl/mol AgCl}$$

EXAMPLE 2:

Calculate the grams of analyte per gram of precipitate for the following conversions:

Analyte:	Precipitate:
2K ₂ HPO ₄	$Mg_2P_2O_7$

$$g \frac{K_{2}HPO_{4}}{Mg_{2}P_{2}O_{7}} = \frac{FW K_{2}HPO_{4} (g/mol)}{FW Mg_{2}P_{2}O_{7} (g/mol)} \times \frac{2}{1} (mol_{2}HPO_{4}/mol_{2}Mg_{2}P_{2}O_{7})$$

$$GF = \frac{2}{1} \times \frac{174.2 g/mol}{222.6 g/mol} = 1.565 g_{2}HPO_{4}/mol_{2}Mg_{2}P_{2}O_{7}$$

by Wan Norfazilah Wan Ismail <u>http://ocw.ump.edu.my/course/view.php?id=467</u>

EXAMPLE 3:

Calculate the grams of analyte per gram of precipitate for the following conversions:

Analyte:	Precipitate:
Bi ₂ S ₃	3BaSO ₄

$$g \frac{\text{Bi}_2\text{S}_3}{\text{BaSO}_4} = \frac{\text{FW Bi}_2\text{S}_3(\text{g/mol})}{\text{FW BaSO}_4(\text{g/mol})} \times \frac{1}{3} \pmod{\text{Bi}_2\text{S}_3/\text{mol BaSO}_4}$$
$$GF = \frac{1}{3} \times \frac{514.16 \text{ g/mol}}{233.43 \text{g/mol}} = 0.734 \text{ g Bi}_2\text{S}_3/\text{mol BaSO}_4$$

BY NC SA http://ocw.ump.edu.my/course/view.php?id=467

VOLATILIZATION GRAVIMETRY

- For water:
 - **DIRECT METHOD**: Water vapor is collected on any of several solid desiccants, and its mass is determined from the mass gain of desiccants
 - **INDIRECT METHOD**: Amount of water is determined by the loss of mass of the sample during heating, is less satisfactory because it must assumed that the water is the only component volatilized.

PARTICULATE GRAVIMETRY

- Two approaches :
- filtration solid particulates are separated from their gas, liquid or solid matrix
- Extraction can be extracted from its matrix with a suitable solvent

APPLICATION OF PARTICULATE GRAVIMETRY

- Microbiological testing of water
- Determination of suspended solid in river water
- Total airborne particulates by using high-volume air sampler
- Grain size distributions for sediments and soils

Editor: Wan Norfazilah Wan Ismail

Author: Siti Maznah Kabeb

Industrial Chemistry Programme Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

Gravimetric Analysis by Wan Norfazilah Wan Ismail <u>http://ocw.ump.edu.my/course/view.php?id=467</u>

Communitising Technology