

ANALYTICAL CHEMISTRY

Sampling and Sample Preparation

by Wan Norfazilah Wan Ismail Faculty of Industrial Sciences & Technology <u>norfazilah@ump.edu.my</u>

Chapter Description

- Expected Outcomes
 - Describe the proper collection of sample during the sampling process.
 - Understand and apply the basic technique of transporting the sample from the point of collection to the analytical laboratory.
 - State the proper selection of the laboratory sample.
 - Describe the sample method used to convert sample into a suitable form for the measurement step.

Contents

• Sampling

- Homogenization of Samples
- Sample Integrity
- Physical Separation on Sampling
- Types of Sample
- Types of Sample Matrices
- Sample Preparation
 - Percentage Recovery
 - Optimization of Chemical Form
 - Separation and Preconcentration Techniques
 - Dissolution

Sampling & Sample Preparation by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology

SAMPLING

Sampling is the process of collecting a representative sample for analysis.

STATISTIC OF SAMPLING

Choosing a sample size

If *n* particles are drawn at random from a mixture of particles A and B, the expected number of particles of type A is *Np* and the standard deviation on many drawings is given by: $\sigma_N = \sqrt{Npq}$

Where σN is the standard deviation in sampling operation
N is the number of particles drawn at random
p is the fraction of particle A
q is the fraction of particle B

The relative standard deviation is σ_N/N given by the equation

$$\frac{\sigma_N}{N} = \frac{\sqrt{Npq}}{N} = \sqrt{\frac{pq}{N}}$$

STATISTIC OF SAMPLING

Relative variance
$$\equiv R^2 = \left(\frac{\sigma_N}{N}\right) = \frac{pq}{N}$$

 $NR^2 = pq$

The mass of sample drawn is proportional to the number of particles described by the following expression

$$mR^2 = K_s$$

where	т	is the mass of sample drawn
	R	is the relative standard deviation (expressed as a percentage)
	K _s	is the sampling constant

STATISTIC OF SAMPLING

Choosing the number of replicates

$$u = \bar{x} \pm \frac{ts}{\sqrt{N}}$$

We can then estimate the N value so that the confidence limit is some fraction of x. Let R be the maximum allowable relative error (relative standard deviation). Thus,

$$R\bar{x} = t\frac{s}{\sqrt{N}}$$

SAMPLING TECHNIQUES

The choice of sampling method depends on a number of factors:

- The **chemistry** of the material to be assayed.
- The size of the bulk sample
- The **physical state** of the fraction to be analysed (e.g. crystalline solid, glassy solid, liquid, gas, etc.)

SAMPLING TECHNIQUES

"Cone and quarter" method.

Suppose you have a pile of material to analyze. The following are the logical steps in the sampling:

- Divide the pile of material into quarters (it can at least be done through imagination, since it is difficult to divide a few tons sample pile).
- Take samples from each quarter of the pile. Crush these samples and form into a smaller conical pile.
- Flatten the conical pile and cut into equal quarters and the two opposite quarters are chosen at random.
- Crush the quarter further, mix it thoroughly and repile.

HOMOGENIZATION

One of the treatments for a **solid** sample is homogenization. This can be carried out by

- Crushing
- Pulverizing
- Grinding
- Rendering it into a thoroughly mixed powder

Samples should contain large number of particles because:

- Variation in content between individual samples in minimized
- Each sample should be more representative of the material

SAMPLE INTEGRITY

Effect of some important factors such as:

- Time
- Temperature
- Humidity level
- Sample acidity
- Oxygen content
- Exposure to light
- Selection of container (must not contribute interferents and adsorb or absorb analytes significantly

PHYSICAL SEPARATION ON SAMPLING

	Material separated			
Original matrix	Solid	Liquid	Gas	
Solid	By density- flotation By solubility differences	By heat and trap	By melting solid and gas purging gas	
Liquid	By filtration By centrifugation	By distillation By decantation of immiscible liquids	By purge and trap By gas-permeable membranes	
Gas	By filtration (suspended particles removed)	By filtration (liquid aerosols removed)	By differential diffusion By selective freezing	

TYPES OF SAMPLE

Sampling & Sample Preparation by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology

TYPES OF SAMPLES

Method	Principles of Technique	
Sampling bag	Fill a plastic bag with ambient air, seal the bag, and transport it	
	to the laboratory. Gas can be used directly.	
Centrifugation	Sample placed in tapered centrifugation tube and spun at high	
	force and forced to the bottom of tube, liquid is decanted. It is	
	slow; depends on settling rate.	
Classical methods		
Dissolution	Solid sample is dissolved in solvent without chemical change.	
	Inorganic solids may require acid or base to enhance solvation.	
	Heat may be required for some sample.	
Modern methods		
Accelerated solvent	Pressurized liquid extraction. Solid sample is placed in sealed	
extraction (ASE)	container and heated to above its boiling point. Extracted	
	analyte is removed and transferred to vial for further treatment.	

SAMPLE PREPARATION

The general principles of sample preparations are:

- Sample preparation **should not lose** any analyte
- Bring the analyte into the **best chemical form** for assay method used
- Remove interferences
- Should not add the inappropriate sample cross contamination
- If necessary, dilute the sample or concentrate the sample

PERCENTAGE RECOVERY

% recovery = $\frac{Analyte \ concentration \ in \ assay}{Analyte \ concentration \ in \ sample} \times 100$

or

% recovery = $\frac{Weight of analyte from assay}{AWeight of analyte from sample} \times 100$

OPTIMIZATION OF CHEMICAL FORM

Sample	Drying conditions
Inorganic sample	Heat at 110°C
Common organic samples	Heating depends on nature of sample. Heating can remove organic vapours adsorbed by solid organic samples
Biological sample	Heat at <100°C
Hygroscopic sample	Drying in a vacuum desiccator
Oxidizable sample	Vacuum desiccator or under nitrogen
Heat-sensitive	Freeze-drying (sample in frozen, then moisture
sample (eg.	is removed from the frozen sample by vacuum)
Biological sample)	

SEPARATION & PRECONCENTRATION TECHNIQUES

When the analyte is present in a matrix containing interfering species, there are three different ways to measure the analyte:

- Use a **selective analytical technique**, such as ion-selective electrode
- Perform **selective derivatization** of the analyte that quantitatively convert the analyte into another chemical species that can be measured more easily.
- Remove the analyte from the sample matrix by a separation or extraction process.

DISSOLUTION PROCEDURES

Category	Description
Dry ashing	• Requires high temperature and oxygen to convert the sample into
	more soluble oxides.
	• Similar to combustion techniques except that it is usually carried
	out i n a combustion tube or bomb placed in a furnace, or plasma
	source.
Oxidative	• A powerful technique for dissolving difficult samples such as
fusion	refractories.
	• Large quantities of flux material (e.g. salts) must be mixed with the
	sample before the fusion reaction (10-20 g of flux: 1 g sample)
Wet oxidation	• Requires mineral acids (usually hydrochloric acid , nitric acid,
(sample	perchloric acid, sulfuric acid and hydrofluoric acid) and heat.
digestion)	• Carried out in open or closed containers with as much heat as can
	be tolerated by container.

Author Information

Wan Norfazilah Wan Ismail

Industrial Chemistry Programme Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

