Analytical Chemistry

Chapter 1

by
Wan Norfazilah Wan Ismail
Faculty of Industrial Sciences \& Technology norfazilah@ump.edu.my

http://ocw.ump.edu.my/course/view.php?id=467

Activity 2

1. Calculate the formula weights of the following substances:
a. $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
c. $\quad \mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
d. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
2. Calculate the number of milimoles contained in 500 mg of each of the following substances:
a. BaCrO_{4}
b. CHCl_{3}
c. $\mathrm{KIO}_{3} \cdot \mathrm{HIO}_{3}$
d. $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$
e. $\quad \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
f. $\quad \mathrm{FeSO}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Activity 2

3. Calculate the number of grams of each of the following substances that would have to be dissolved and diluted to 100 mL to prepare a 0.200 M solution.
a. $\mathrm{MgNH}_{4} \mathrm{PO}_{4}$
b. $\quad \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
c. $\mathrm{FeSO}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{NH}_{3}\right) 2 \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
4. Calculate the number of miligrams of each of the following substances you would have to weigh out in order to prepare the listed solutions:
a. 0.500 L of 0.200 M sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
b. $\quad 10.0 \mathrm{~mL}$ of 0.500 M sucrose
c. $\quad 0.0100 \mathrm{~L}$ of $0.200 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
d. 250 mL of $0.900 \% \mathrm{NaCl}(\mathrm{g} / 100 \mathrm{~mL}$ solution $)$

Activity 2

5. The chemical stockroom is supplied with the following stock solution: 0.100 $\mathrm{M} \mathrm{HCl}, 0.0200 \mathrm{M} \mathrm{NaOH}, 0.0500 \mathrm{M} \mathrm{KOH}, 10.0 \%$ (w/v) HBr and 5.00\% (w/v) $\mathrm{Na}_{2} \mathrm{CO}_{3}$. What volume of stock solution needed to obtain the following amounts of solutes?
a. $\quad 0.0500 \mathrm{~mol} \mathrm{HCl}$
b. $\quad 0.0100 \mathrm{~mol} \mathrm{NaOH}$
c. $\quad 0.100 \mathrm{~mol} \mathrm{KOH}$
d. 5.00 g HBr
e. $\quad 4.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
f. $\quad 1.00 \mathrm{~mol} \mathrm{HBr}$
g. $\quad 0.500 \mathrm{~mol} \mathrm{Na} \mathrm{NO}_{3}$

Activity 2

6. Calculate the molar concentrations of all the cations and anions in a solution prepared by mixing 10.0 mL each of the following solutions: 0.100 M $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}, 0.100 \mathrm{M} \mathrm{KNO}_{3}$ and $0.100 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$.
7. A solution containing $10.0 \mathrm{mmol}_{\mathrm{CaCl}}^{2}$ is diluted to 1 L . Calculate the number of grams of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ per mililiter to the final solution.
8. How many mililiters of concentration $\mathrm{HCl}, 38.0 \%(\mathrm{w} / \mathrm{w})$, specific gravity 1.19 are required to prepare 1 L of a 0.100 M solution? (Assume density and specific gravity are equal within three significant figures).

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=467

Author Information

Wan Norfazilah Wan Ismail

Industrial Chemistry Programme

Faculty of Industrial Sciences \& Technology
Universiti Malaysia Pahang

