

Analytical Chemistry

Chapter 1

by Wan Norfazilah Wan Ismail Faculty of Industrial Sciences & Technology <u>norfazilah@ump.edu.my</u>

Chapter Name by Main Author's Name http://ocw.ump.edu.my/course/view.php?id=467

Activity 2

- 1. Calculate the formula weights of the following substances:
 - a. BaCl₂.2H₂O
 - b. $KHC_2O_4 H_2C_2O_4$
 - c. $Ag_2Cr_2O_7$
 - d. $Ca_3(PO_4)_2$
- 2. Calculate the number of milimoles contained in 500 mg of each of the following substances:
 - a. BaCrO₄
 - b. CHCl₃
 - c. KIO₃.HIO₃
 - d. MgNH₄PO₄
 - e. $Mg_2P_2O_7$
 - f. $FeSO_4.C_2H_4(NH_3)_2SO_4.4H_2O$

Chapter Name by Main Author's Name <u>http://ocw.ump.edu.my/course/view.php?id=467</u>

Activity 2

- 3. Calculate the number of grams of each of the following substances that would have to be dissolved and diluted to 100 mL to prepare a 0.200 M solution.
 - a. MgNH₄PO₄
 - b. $Mg_2P_2O_7$
 - c. $FeSO_4.C_2H_4(NH_3)2SO_4.4H_2O$
- 4. Calculate the number of miligrams of each of the following substances you would have to weigh out in order to prepare the listed solutions:
 - a. 0.500 L of 0.200 M sucrose $(C_{12}H_{22}O_{11})$
 - b. 10.0 mL of 0.500 M sucrose
 - c. $0.0100 \text{ L of } 0.200 \text{ M Na}_2\text{SO}_4$
 - d. 250 mL of 0.900% NaCl (g/100 mL solution)

Chapter Name by Main Author's Name <u>http://ocw.ump.edu.my/course/view.php?id=467</u>

Activity 2

- 5. The chemical stockroom is supplied with the following stock solution: 0.100 M HCl, 0.0200 M NaOH, 0.0500 M KOH, 10.0% (w/v) HBr and 5.00% (w/v) Na_2CO_3 . What volume of stock solution needed to obtain the following amounts of solutes?
 - a. 0.0500 mol HCl
 - b. 0.0100 mol NaOH
 - c. 0.100 mol KOH
 - d. 5.00 g HBr
 - e. $4.00 \text{ g} \text{Na}_2 \text{CO}_3$
 - f. 1.00 mol HBr
 - g. $0.500 \text{ mol } \text{Na}_2\text{CO}_3$

Chapter Name by Main Author's Name http://ocw.ump.edu.my/course/view.php?id=467

- 6. Calculate the molar concentrations of all the cations and anions in a solution prepared by mixing 10.0 mL each of the following solutions: 0.100 M $Mn(NO_3)_2$, 0.100 M KNO₃ and 0.100 M K₂SO₄.
- 7. A solution containing 10.0 mmol $CaCl_2$ is diluted to 1 L. Calculate the number of grams of $CaCl_2.2H_2O$ per mililiter to the final solution.
- 8. How many mililiters of concentration HCl, 38.0% (w/w), specific gravity 1.19 are required to prepare 1 L of a 0.100 M solution? (Assume density and specific gravity are equal within three significant figures).

Chapter Name by Main Author's Name <u>http://ocw.ump.edu.my/course/view.php?id=467</u>

Author Information

Wan Norfazilah Wan Ismail

Industrial Chemistry Programme Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

Chapter Name by Main Author's Name http://ocw.ump.edu.my/course/view.php?id=467