

ANALYTICAL CHEMISTRY

Introduction to Chemical Analysis

by Wan Norfazilah Wan Ismail Faculty of Industrial Sciences & Technology <u>norfazilah@ump.edu.my</u>

Chapter Description

- Aims
 - To instil the understanding of the basic principles of the quantitative analytical chemistry and how the principles are utilized in the analytical laboratory.
 - Systematic guidance towards achieving more knowledge and skills in the data handling applications and quantitative analytical methods.
- Expected Outcomes
 - State the steps in chemical analysis and interpret the given problem.
 - Describe the suitable analytical techniques to solve the given problem.
 - Understand and apply the basic aspects of chemical analysis such as concentration calculations and preparation of solution.

Contents

- Analytical Methodology
- Selection of Analytical Techniques
- Concentration Units
- Preparation of Solutions
- Dilution
- Chemical Stoichiometry

ANALYTICAL METHODOLOGY

SELECTION OF ANALYTICAL TECHNIQUE

Quantitative

Concentration of analyte

Measured signal

Precision depends on instrumentation and/or fundamental phenomena

Introduction to Chemical Analysis by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology

CONCENTRATION UNITS

Name	Component	Total sample	Abbreviatior	Units
	measured by	measured by	/	used
Molar concentration				
Molarity	Number	Volume	М	mol L ⁻¹
Formality	Number	Volume	F	mol L ⁻¹
Normality	Number	Volume	Ν	Normal L ⁻¹
Molality	Number	Weight	m	mol kg⁻¹
Percent Composition				
Weight-to-weight	Weight	Weight	w/w	%(w/w)
Weight-to-volume	Weight	Volume	w/v	%(w/v)
Volume-to-volume	Volume	Volume	v/v	%(v/v)

MOLAR CONCENTRATION

Molar concentration, $C = \frac{\text{no. mol solute}}{\text{no. L solution}} @ \frac{\text{no. mmol solute}}{\text{no. mL solution}}$

One mole: contains 6.022 x 10²³ of molecules

Atomic weight: the number of grams containing one Avogadro's number of atoms of the element

Molecular weight: number of grams that contains one Avogadro's number of **molecules** of the substance

Molar concentration: the number of moles of that species that is contained in one liter of **solution** (unit: molarity, M)

Analytical molarity: total number of moles of the solute in one liter of solution

Species molarity: the number of moles of a **particular species** in one liter of a solution at equilibrium

MOLAR CONCENTRATION

Formality: the number of formula weights per liter of solution

 $F = \frac{\text{no. F W}}{\text{no. L solution}}$

Molality: the number of moles of the substance per kilograms of the solvent **Normality**: widely used in redox reaction. The normality of redox reagent is *n* times the molarity, where *n* is the number of electrons donated or accepted by the species in a chemical reaction.

PERCENT COMPOSITION

Weight-to-weight:

Weight percent, % w/w = $\frac{\text{mass of solute}}{\text{weight of solution or mixture}} \times 100$

Weight-to-volume:

Volume percent, % v/v =
$$\frac{\text{volume of solute}}{\text{volume of solution}} \times 100$$

Volume-to-volume:

Volume percent, % w/v =
$$\frac{\text{mass of solute}}{\text{volume of solution}} \times 100$$

PERCENT COMPOSITION

The weight-to-weight unit can also be expressed as a fraction. These units of concentration are usually used to express very low concentrations.

Parts per million (p	om):
npm = mass of solute	$\times 10^6$ or mg/L = ppm
mass of sample	
Parts per billion (p	ob):
ppb = mass of solute	$\times 10^9$ or $\mu g/L = ppb$
mass of sample	
Parts per trillion (p	pt):
nnt = mass of solute	or ng/L = ppt
mass of sample	

UNIT CONVERSION

1111135				
ng	10 ⁻⁹ g			
μg	10⁻ ⁶ g			
mg	10 ⁻³ g			
g	10 ³ mg @ 10 ⁻³ kg			
kg	10 ³ g			

Mass

Volume			
μL	10 ⁻³ mL		
mL	10 ³ μL @ 10 ⁻³ L		
L	10 ³ mL		
cm ³	mL		
dm ³	L		
m ³	10 ³ L		

|--|

ppt	ng/L
ppb	μg/L
ppm	mg/L
Μ	mol/L @ mmol/mL

Introduction to Chemical Analysis by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology

PREPARATION OF SOLUTION

Usual step: weigh a certain quantity of the reagent and dissolve it in a solvent in a volumetric flask.

Tips:

- 1) know your reagent and solvent
- 2) know the **molarity** and **volume** that you need
- 3) start calculating, get the weight of reagent
- 4) weigh your reagent using analytical balance
- 5) **dissolve** the reagent in the solvent using volumetric flask

A GOOD analytical chemist very concern on ACCURACY!

DILUTION

Dilute solution (with low concentration) can be prepared **from a more concentrated** solution. A known volume of the concentrated solution can be transferred into a new flask and diluted to the required volume or weight.

 $\mathbf{M}_{1}\mathbf{V}_{1}=\mathbf{M}_{2}\mathbf{V}_{2}$

CHEMICAL STOICHIOMETRY

The stoichiometry of a reaction is the relationship among the number of moles of reactants and products as shown by a balanced equation.

CHEMICAL STOICHIOMETRY

A balanced chemical equation is a statement of the combining ratios or stoichiometry in units of moles among the reacting substances and their products.

- Transformation of the known mass of a substance in grams to a corresponding number of moles
 - Multiplication by a factor that accounts for the stoichiometry
- Reconversion of the data in moles back to the SI units called for in the answer

Author Information

Wan Norfazilah Wan Ismail

Industrial Chemistry Programme Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

Introduction to Chemical Analysis by Wan Norfazilah Wan Ismail http://ocw.ump.edu.my/course/view.php?id=467

Communitising Technology