ANALYTICAL CHEMISTRY

Introduction to Chemical Analysis

by
Wan Norfazilah Wan Ismail
Faculty of Industrial Sciences \& Technology norfazilah@ump.edu.my

Chapter Description

- Aims
- To instil the understanding of the basic principles of the quantitative analytical chemistry and how the principles are utilized in the analytical laboratory.
- Systematic guidance towards achieving more knowledge and skills in the data handling applications and quantitative analytical methods.
- Expected Outcomes
- State the steps in chemical analysis and interpret the given problem.
- Describe the suitable analytical techniques to solve the given problem.
- Understand and apply the basic aspects of chemical analysis such as concentration calculations and preparation of solution.

Contents

- Analytical Methodology
- Selection of Analytical Techniques
- Concentration Units
- Preparation of Solutions
- Dilution
- Chemical Stoichiometry

PAHANG

Understanding and defining the problem

Preparation and pretreatment of sample

SELECTION OF ANALYTICAL TECHNIQUE

Quantitative

Introduction to Chemical Analysis
by Wan Norfazilah Wan Ismail
http://ocw.ump.edu.my/course/view.php?id=467

CONCENTRATION UNITS

| Name | Component
 measured by | Total sample
 measured by | Abbreviation | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| used | | | | |

Percent Composition

Weight-to-weight	Weight	Weight	w/w	$\%(w / w)$
Weight-to-volume	Weight	Volume	w/v	$\%(w / v)$
Volume-to-volume	Volume	Volume	v/v	$\%(v / v)$

MOLAR CONCENTRATION

Molar concentration, $C=\frac{\text { no. mol solute }}{\text { no. L solution }} @ \frac{\text { no. mmol solute }}{\text { no. mL solution }}$

One mole: contains 6.022×10^{23} of molecules
Atomic weight: the number of grams containing one Avogadro's number of atoms of the element

Molecular weight: number of grams that contains one Avogadro's number of molecules of the substance

Molar concentration: the number of moles of that species that is contained in one liter of solution (unit: molarity, M)

Analytical molarity: total number of moles of the solute in one liter of solution

Species molarity: the number of moles of a particular species in one liter of a solution at equilibrium

MOLAR CONCENTRATION

Formality: the number of formula weights per liter of solution

$$
F=\frac{\text { no. F W }}{\text { no. L solution }}
$$

Molality: the number of moles of the substance per kilograms of the solvent Normality: widely used in redox reaction. The normality of redox reagent is n times the molarity, where n is the number of electrons donated or accepted by the species in a chemical reaction.

$$
N=n M
$$

PERCENT COMPOSITION

Weight-to-weight:

$$
\text { Weight percent, } \% w / w=\frac{\text { mass of solute }}{\text { weight of solution or mixture }} \times 100
$$

Weight-to-volume:

$$
\text { Volume percent, } \% \mathrm{v} / \mathrm{v}=\frac{\text { volume of solute }}{\text { volume of solution }} \times 100
$$

Volume-to-volume:
Volume percent, $\% \mathrm{w} / \mathrm{v}=\frac{\text { mass of solute }}{\text { volume of solution }} \times 100$

PERCENT COMPOSITION

The weight-to-weight unit can also be expressed as a fraction.
These units of concentration are usually used to express very low concentrations.

Parts per million (ppm):

$$
\mathrm{ppm}=\frac{\text { mass of solute }}{\text { mass of sample }} \times 10^{6}
$$

Parts per billion (ppb):

$$
\mathrm{ppb}=\frac{\text { mass of solute }}{\text { mass of sample }} \times 10^{9}
$$

Parts per trillion (ppt):

$$
\mathrm{ppt}=\frac{\text { mass of solute }}{\text { mass of sample }} \times 10^{12}
$$

or mg/L = ppm

UNIT CONVERSION

Volume

$\mu \mathrm{L}$	$10^{-3} \mathrm{~mL}$
mL	$10^{3} \mu \mathrm{~L} @$ $10^{-3} \mathrm{~L}$
L	$10^{3} \mathrm{~mL}$
$\mathrm{~cm}^{3}$	mL
dm^{3}	L
$\mathrm{~m}^{3}$	$10^{3} \mathrm{~L}$

Concentration

ppt	ng / L
ppb	$\mu \mathrm{g} / \mathrm{L}$
ppm	mg / L
M	$\mathrm{mol} / \mathrm{L} @$ $\mathrm{mmol} / \mathrm{mL}$

PREPARATION OF SOLUTION

Usual step: weigh a certain quantity of the reagent and dissolve it in a solvent in a volumetric flask.

Tips:

1) know your reagent and solvent
2) know the molarity and volume that you need
3) start calculating, get the weight of reagent
4) weigh your reagent using analytical balance
5) dissolve the reagent in the solvent using volumetric flask

A GOOD analytical chemist very concern on ACCURACY!

DILUTION

Dilute solution (with low concentration) can be prepared from a more concentrated solution. A known volume of the concentrated solution can be transferred into a new flask and diluted to the required volume or weight.

$$
M_{1} V_{1}=M_{2} V_{2}
$$

CHEMICAL STOICHIOMETRY

The stoichiometry of a reaction is the relationship among the number of moles of reactants and products as shown by a balanced equation.

CHEMICAL STOICHIOMETRY

A balanced chemical equation is a statement of the combining ratios or stoichiometry in units of moles among the reacting substances and their products.

\bullet
Transformation of the known mass of a substance in grams to a corresponding number of moles Multiplication by a factor that accounts for the stoichiometry
Reconversion of the data in moles back to the SI units called for in the answer

Introduction to Chemical Analysis
by Wan Norfazilah Wan Ismail

Author Information

Wan Norfazilah Wan Ismail

Industrial Chemistry Programme
Faculty of Industrial Sciences \& Technology
Universiti Malaysia Pahang

