

BUF1113 BASIC PHYSICS

PHYSICS AND MEASUREMENT

MAZNI BT. MUSTAFA Faculty Industrial Sciences & Technology maznim@ump.edu.my

Physics & Measurements by Mazni bt. Mustafa http://ocw.ump.edu.my/course/view.php?id=464

Communitising Technology

CHAPTER DESCRIPTION

- Aims
- Student should use appropriate prefixes in calculations, manipulate the dimensional analysis and perform unit conversions.
- Expected Outcomes
 - Able to resolve physical quantity and International systems of measurement
 - Able to use appropriate prefixes in calculations
 - Able to determine the S.I unit of physical quantity, homogeneity of an equation and to construct an equation
 - Able to perform the dimensional analysis
 - Able to perform unit conversions
- References
 - Giancoli, D.C. Physics for Scientists and Engineers: with Modern Physics (4th Edition). Pearson Prentice Hall, 2013
 - Paul E. Tippens, Physics 7th Edition. Mc Graw Hill, 2013 ٠
 - Physics for scientists and engineers / Raymond A. Serway, John W. Jewett, Australia : Cengage Learning, 2014

CONTENT

- 1.1 Standard of Length, Mass and Time
- 1.2 Dimensional Analysis
- 1.3 Conversion of Unit

- A physical phenomenon such as size, length etc. of an object that can describe quantitatively is called physical quantity.
- The measurement of the physical quantity is up to a particular standard or unit e.g 10 m length or 100 °C of temperature
- ●...and this unit must be write along with the numerical value
 - For e.g.: 3.5 cm is differ from 3.5 inches or 3.5
 mm.
 By NC SA

- Quantity Unit Unit • For any unit, we need to define a **Abbreviation** standard. Length meter m • The most common unit used Time second S around the world is International kilogram Kg Mass System of Units, SI Unit Electric Α ampere • Is commonly known as "metric Current system". Temperature kelvin Κ ● In 1960, it is known mole as Amount of mol International System, or SI Substance (in French, Système International). candela Luminous cd Intensity
 - 7 base quantities official base
 units

Quantity	Unit	Unit Abbreviation	Length of the pat traveled by light i
Length	meter	m	1/299,792,458 second
Time	second	S	Time a many line of fam
Mass	kilogram	Kg 🔪	9 192 631 770 periods o
Electric Current	ampere	A	radiation emitted by cesium atoms
Temperature	kelvin	К	
Amount of Substance	mole	mol	Platinum cylinder in International Bureau of
Luminous Intensity	candela	cd	Weights and Measures, Paris

Each of the base unit has a specific measurable definition

Length – distance between two point along an object

Length	Meters
Atom (diameter)	10 ⁻¹⁰ m
Virus	10 ⁻⁷ m
Finger width	10 ⁻² m
Earth to Sun	10 ¹¹ m

Time – duration or continuous measurable quantity between events (past, present and future).

Time Interval	Seconds
One day	10 ⁵ m
Human life span	2 x 10 ⁹ m
Life on earth	10 ¹⁷ m
Age of Universe	10 ¹⁸ m

• Mass –

amount of matter in an object

Object	Kilograms
Electron	10 ⁻³⁰ kg
Proton, neutron	10 ⁻²⁷ kg
Mosquito	10 ⁻⁵ kg
Human	10 ² kg
Ship	10 ⁸ kg
Sun	2 x 10 ³⁰ kg
Galaxy	10 ⁴¹ kg

1.1 Standard of Length, Mass and Time Prefixes correspond to powers of 10 We usually express multiples of 10 or 1/10 in index

notation:

$$1000 = 10^3$$
 $\frac{1}{1000} = 10^{-3}$

- Prefix has a *specific name* such nano, pico.
- Prefix has a *specific abbreviation e.g \mu, G.*
- Prefixes are multipliers and can be used with any
 basic units

Communitising Technology

• List of standard SI prefixes.

Table 5. SI prefixes

Factor	Name	Symbol	Factor	Name	Symbol
10 ²⁴	yotta	Υ	10 ⁻¹	deci	d
10 ²¹	zetta	Z	10 ⁻²	centi	с
10 ¹⁸	exa	E	10 ⁻³	milli	m
10 ¹⁵	peta	Р	10 ⁻⁶	micro	μ
10 ¹²	tera	Т	10 ⁻⁹	nano	n
10 ⁹	giga	G	10 ⁻¹²	pico	р
10 ⁶	mega	М	10 ⁻¹⁵	femto	f
10 ³	kilo	k	10 ⁻¹⁸	atto	а
10 ²	hecto	h	10 ⁻²¹	zepto	z
10 ¹	deka	da	10 ⁻²⁴	yocto	у

http://ocw.ump.edu.my/course/view.php?id=464

Oimension has a specific meaning – it represent the physical nature of a quantity (base quantity that make it up)

• Dimensions are denoted with square brackets e.g.

- Length [L]
- Mass [*M*]
- Time [*T*]

• Each dimension could have many units.

- For e.g.: dimension of area always [L²]: the unit can be m², ft², cm² and so on.
- The formula for a derived quantity may be different, but dimension must be the same.
- E.g. : The area of a triangle is $A = \frac{1}{2}bh$, whereas area of circle is πr^2 .

• Both triangle and circle area dimensions are always $[L^2]$.

Dimensional analysis can be used to:

- a. To check the homogeneity / consistency of an equation & to prove the validity of an equation.
- b. To determine the SI unit of any physical quantity.

Problem Solving Strategy:

- 1. Dimensions can be treated as algebraic quantities can be added, subtract or multiply, divide.
- 2. Both sides of equation must or need to have the same dimensions
- 3. There are no dimensions for constant
- 4. Any relationship can be correct only if the dimensions on both sides of the equation are the same

Example 1
Given
$$x = \frac{1}{2}at^2$$
. Is this equation correct?

LHS = RHS

: Dimensionally correct

Example 2

Determine weather this equation true or not.

$$v = v_o + \frac{1}{2}at^2$$

Answer:

 $LHS \neq RHS$

Communitising Technology

Example 3 Determine the SI unit of density. Given density is mass per unit volume.

Answer:

 \therefore SI unit of density : kg/m³

Often, we are given a quantity in one sets of units, but we want to expressed in another set of unit.

• e.g.: suppose a table is 21.5 In wide, in cm?

21.5 inches =
$$(21.5 \text{ in.}) \times (2.54 \frac{\text{cm}}{\text{in.}}) = 54.6 \text{ cm}.$$

Unit conversions always involve
a conversion factor.
Example: 1 in. = 2.54 cm.
Written another way: 1 = 2.54 cm/in.

$$\boxed{\text{Conversion factor}}_{\text{factor}}$$

Onversion Factor

Length		
1 in.	= 2.54 cm (defined)	
1 cm	= 0.3937 in.	
1 ft	= 30.48 cm	
1 ft	= 12 in.	
1 m	= 39.37 in.	= 3.281ft
1 mi	= 5280 ft	= 1.609 km
1 km	= 0.6214 mi	

Example 4

Convert 15.0 In. to cm.

Physics & Measurements by Mazni bt. Mustafa http://ocw.ump.edu.my/course/view.php?id=464

Communitising Technology

Example 5

Eight-thousanders are located in the Himalayan and Karakoram mountain ranges in Asia and their peaks are over 8000 m above sea level. What is the elevation, in feet, of an 8000 m?

Example 5: Answer

8000 m =
$$(8000 \text{ m}) \times \left(\frac{3.281 \text{ ft.}}{1 \text{ m}}\right) = 26248 \text{ ft.}$$
 or

8000 m =
$$(8000 \text{ m}) \times \left(\frac{39.37 \text{ ln.}}{1 \text{ m}}\right) \times \left(\frac{1 \text{ ft.}}{12 \text{ ln.}}\right) = 26247 \text{ ft.}$$
 or

$$8000 \text{ m} = (8000 \text{ m}) \times \left(\frac{100 \text{ m}}{1 \text{ m}}\right) \times \left(\frac{0.3937 \text{ m}}{1 \text{ m}}\right) \times \left(\frac{1 \text{ ft.}}{12 \text{ m}}\right) = 26247 \text{ ft.}$$

$$\lim_{\substack{\longrightarrow \\ \text{BY NC SA}}} \exp\left(\frac{1 \text{ ft.}}{12 \text{ m}}\right) = 26247 \text{ ft.}$$

BY

Example 6

An apartment have floor area is 880 square feet (ft²). What is its area in square meter?

Answer:

$$880 \text{ ft}^{2} = (880 \text{ ft}^{2}) \times \left(\frac{(1 \text{ m})^{2}}{(3.281 \text{ ft})^{2}}\right) = 82 \text{ m}^{2} \text{ or}$$

$$880 \text{ ft}^{2} = (880 \text{ ft}^{2}) \times \left(\frac{(30.48 \text{ gm})^{2}}{(1 \text{ ft})^{2}}\right) \times \left(\frac{(1 \text{ m})^{2}}{(100 \text{ gm})^{2}}\right) = 82 \text{ m}^{2}$$

$$880 \text{ ft}^{2} = (880 \text{ ft}^{2}) \times \left(\frac{(30.48 \text{ gm})^{2}}{(1 \text{ ft})^{2}}\right) \times \left(\frac{(1 \text{ m})^{2}}{(100 \text{ gm})^{2}}\right) = 82 \text{ m}^{2}$$

$$880 \text{ ft}^{2} = (880 \text{ ft}^{2}) \times \left(\frac{(30.48 \text{ gm})^{2}}{(1 \text{ ft})^{2}}\right) \times \left(\frac{(1 \text{ m})^{2}}{(100 \text{ gm})^{2}}\right) = 82 \text{ m}^{2}$$

Example 7

The speed limit in Ipoh is 55 miles per hour (mi/h or mph), what is this speed (a) in m/s (b) in km/h

1.3 Conversion of unit
Example 7: Answer
(a) 55 mi/h =
$$(55 \text{ mai/h}) \times (\frac{1.609 \text{ km}}{1 \text{ mai}}) \times (\frac{1000 \text{ m}}{1 \text{ km}}) \times (\frac{1 \text{ h}}{3600 \text{ s}}) = 24.6 \text{ m/s}$$

(b) 55 mi/h = $(55 \text{ mai/h}) \times (\frac{1.609 \text{ km}}{1 \text{ mai}}) = 88.5 \text{ km/h}$

