BUF1113 BASIC PHYSICS

PHYSICS AND MEASUREMENT

MAZNI BT. MUSTAFA Faculty Industrial Sciences \& Technology maznim@ump.edu.my

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

CHAPTER DESCRIPTION

- Aims
- Student should use appropriate prefixes in calculations, manipulate the dimensional analysis and perform unit conversions.

- Expected Outcomes

- Able to resolve physical quantity and International systems of measurement
- Able to use appropriate prefixes in calculations
- Able to determine the S.I unit of physical quantity, homogeneity of an equation and to construct an equation
- Able to perform the dimensional analysis
- Able to perform unit conversions
- References
- Giancoli, D.C. Physics for Scientists and Engineers: with Modern Physics (4th Edition). Pearson Prentice Hall, 2013
- Paul E. Tippens, Physics 7th Edition. Mc Graw Hill, 2013
- Physics for scientists and engineers / Raymond A. Serway, John W. Jewett, Australia : Cengage Learning, 2014

CONTENT

1.1 Standard of Length, Mass and Time 1.2 Dimensional Analysis

1.3 Conversion of Unit

1.1 Standard of Length, Mass and Time

© A physical phenomenon such as size, length etc. of an object that can describe quantitatively is called physical quantity.
© The measurement of the physical quantity is up to a particular standard or unit e.g 10 m length or $100^{\circ} \mathrm{C}$ of temperature
O...and this unit must be write along with the numerical value

- For e.g. : 3.5 cm is differ from 3.5 inches or 3.5 mm.

1.1 Standard of Length, Mass and Time

O For any unit, we need to define a standard.
© The most common unit used around the world is International System of Units, SI Unit
© Is commonly known as "metric system".
O In 1960, it is known as International System, or SI (in French, Système International).
© 7 base quantities - official base

Quantity	Unit	Unit Abbreviation
Length	meter	m
Time	second	S
Mass	kilogram	Kg
Electric Current	ampere	A
Temperature	kelvin	K
Amount of Substance	mole	mol
Luminous Intensity	candela	cd

1.1 Standard of Length, Mass and Time

Quantity	Unit	Unit Abbreviation	Length of the path traveled by light in
Length	meter	m	1/299,792,458 second
Time	second		
Mass	kilogram	Kg	$9,192,631,770$ periods of
Electric Current	ampere	A	radiation emitted by resium atoms
Temperature	kelvin	K	
Amount of Substance	mole	mol	Platinum cylinder in International Bureau of
Luminous Intensity	candela	cd	Weights and Measures, Paris

© Each of the base unit has a specific measurable definition

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

1.1 Standard of Length, Mass and Time

- Length - distance between two point along an object

Length	Meters
Atom (diameter)	$10^{-10} \mathrm{~m}$
Virus	$10^{-7} \mathrm{~m}$
Finger width	$10^{-2} \mathrm{~m}$
Earth to Sun	$10^{11} \mathrm{~m}$

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

1.1 Standard of Length, Mass and Time

© Time - duration or continuous measurable quantity between events (past, present and future).

Time Interval	Seconds
One day	$10^{5} \mathrm{~m}$
Human life span	$2 \times 10^{9} \mathrm{~m}$
Life on earth	$10^{17} \mathrm{~m}$
Age of Universe	$10^{18} \mathrm{~m}$

1.1 Standard of Length, Mass and Time

OMass amount of matter in an object

Object	Kilograms
Electron	$10^{-30} \mathrm{~kg}$
Proton, neutron	$10^{-27} \mathrm{~kg}$
Mosquito	$10^{-5} \mathrm{~kg}$
Human	$10^{2} \mathrm{~kg}$
Ship	$10^{8} \mathrm{~kg}$
Sun	$2 \times 10^{30} \mathrm{~kg}$
Galaxy	$10^{41} \mathrm{~kg}$

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

1.1 Standard of Length, Mass and Time

- Prefixes correspond to powers of 10

We usually express multiples of 10 or $1 / 10$ in index notation:

$$
1000=10^{3} \quad \frac{1}{1000}=10^{-3}
$$

- Prefix has a specific name such nano, pico.
- Prefix has a specific abbreviation e.g μ, G.
- Prefixes are multipliers and can be used with any basic units

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

1.1 Standard of Length, Mass and Time

Table 5. SI prefixes
© List of standard SI prefixes.

Table 5. SI prefixes					
Factor Name Symbol	Factor Name Symbol				
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	C
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	z
10^{1}	deka	da	10^{-24}	yocto	y

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

1.1 Standard of Length, Mass and Time

OPhysical quantities

- Base quantities
- Derived quantities

> Other quantities defined in terms 7 base quantities
> e.g.: Area
> (product of two length)

1.2 Dimensional Analysis

O Dimension has a specific meaning - it represent the physical nature of a quantity (base quantity that make it up)

O Dimensions are denoted with square brackets e.g.

- Length [L]
- Mass [M]
- Time [T]

1.2 Dimensional Analysis

© Each dimension could have many units.

O For e.g.: dimension of area always [L^{2}]: the unit can be $\mathrm{m}^{2}, \mathrm{ft}^{2}, \mathrm{~cm}^{2}$ and so on.

O The formula for a derived quantity may be different, but dimension must be the same.

O E.g. : The area of a triangle is $A=1 / 2 b h$, whereas area of circle is πr^{2}.
© Both triangle and circle area dimensions are always [L^{2}].

1.2 Dimensional Analysis

Dimensional analysis can be used to:
a. To check the homogeneity / consistency of an equation \& to prove the validity of an equation.
b. To determine the SI unit of any physical quantity.

1.2 Dimensional Analysis

Problem Solving Strategy:

1. Dimensions can be treated as algebraic quantities can be added, subtract or multiply, divide.
2. Both sides of equation must or need to have the same dimensions
3. There are no dimensions for constant
4. Any relationship can be correct only if the dimensions on both sides of the equation are the same

1.2 Dimensional Analysis

Example 1

Given $x=\frac{1}{2} a t^{2}$. Is this equation correct?
Answer:

T^{2} is cancel

$[L]=\frac{[L]}{\left[X^{2}\right]}\left[X^{2}\right]=[L]$

LHS $=$ RHS
\therefore Dimensionally correct

1.2 Dimensional Analysis

Example 2

Determine weather this equation true or not.

$$
v=v_{o}+\frac{1}{2} a t^{2}
$$

Answer:

$$
\frac{[L]}{[T]}=\frac{[L]}{[T]}+\frac{[L]}{\left[X^{2}\right]}\left[\mathcal{T}^{2}\right]
$$

1.2 Dimensional Analysis

Example 3 Determine the SI unit of density. Given density is mass per unit volume.

Answer:

$$
\rho=\frac{m}{v}=\frac{[M]}{\left[L^{3}\right]} \longrightarrow \text { Unit: } \mathrm{kg}
$$

\therefore SI unit of density $: \mathrm{kg} / \mathrm{m}^{3}$

1.3 Conversion of unit

O Often, we are given a quantity in one sets of units, but we want to expressed in another set of unit.

- e.g.: suppose a table is 21.5 In wide, in cm ?

$$
21.5 \text { inches }=(21.5 \text { inn }) \times\left(2.54 \frac{\mathrm{~cm}}{\mathrm{in}}\right)=54.6 \mathrm{~cm} .
$$

Unit conversions always involve
a conversion factor.
Example: $\quad 1 \mathrm{in} .=2.54 \mathrm{~cm}$.
Written another way: $1=2.54 \mathrm{~cm} / \mathrm{in}$.

Conversion factor

1.3 Conversion of unit

O Conversion Factor

Length	$=2.54 \mathrm{~cm}$ (defined)	
1 in.	$=0.3937 \mathrm{in}$.	
1 cm	$=30.48 \mathrm{~cm}$	
1 ft	$=12 \mathrm{in}$.	
1 ft	$=39.37 \mathrm{in}$.	$=3.281 \mathrm{ft}$
1 m	$=5280 \mathrm{ft}$	$=1.609 \mathrm{~km}$
1 mi	$=0.6214 \mathrm{mi}$	
1 km		

1.3 Conversion of unit

Example 4

Convert 15.0 In . to cm .

Answer:
From
$1 \mathrm{In} .=2.54 \mathrm{~cm}$
Conversion Factor
$1=\frac{2.54 \mathrm{~cm}}{1 \mathrm{In} .}$

1.3 Conversion of unit

Example 5

Eight-thousanders are located in the Himalayan and Karakoram mountain ranges in Asia and their peaks are over 8000 m above sea level. What is the elevation, in feet, of an 8000 m ?

Physics \& Measurements
by Mazni bt. Mustafa
http://ocw.ump.edu.my/course/view.php?id=464

1.3 Conversion of unit

Example 5: Answer

$$
8000 \mathrm{~m}=(8000 \mathrm{mq}) \times\left(\frac{3.281 \mathrm{ft}}{1 \mathrm{~m}}\right)=26248 \mathrm{ft} .
$$

or

$$
8000 \mathrm{~m}=(8000 \mathrm{mq}) \times\left(\frac{39.37 \mathrm{Mn} .}{1 \mathrm{~m}}\right) \times\left(\frac{1 \mathrm{ft} .}{12 \mathrm{In} .}\right)=26247 \mathrm{ft} .
$$

1.3 Conversion of unit

Example 6

An apartment have floor area is 880 square feet $\left(\mathrm{ft}^{2}\right)$. What is its area in square meter?

1.3 Conversion of unit

Example 7

The speed limit in Ipoh is 55 miles per hour (mi / h or mph), what is this speed
(a) in m / s
(b) in km/h

1.3 Conversion of unit

Example 7: Answer

Convert 1 unit by

 1 unit(a) $55 \mathrm{mi} / \mathrm{h}=(55 \mathrm{mi} / \mathrm{K}) \times\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}\right) \times\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right) \times\left(\frac{1 \not \mathrm{~K}}{3600 \mathrm{~s}}\right)=24.6 \mathrm{~m} / \mathrm{s}$
(b) $55 \mathrm{mi} / \mathrm{h}=(55 \mathrm{mi} / \mathrm{h}) \times\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{ki}}\right)=88.5 \mathrm{~km} / \mathrm{h}$

