PAHANG

BSP1153
 Mechanics \& Thermodynamics Newton's Law

by
Dr. Farah Hanani bt Zulkifli

Faculty of Industrial Sciences \& Technology farahhanani@ump.edu.my

Chapter Description

- Expected Outcomes
- To solve physics's problems by apply the Newton's Law in the horizontal, vertical and along a slope motion.
- References
- Young, H.D. \& Freeman, R.A. University Physics with Modern Physics (14th Ed.) Pearson, 2015
- University physics with modern physics / Wolfgang Bauer, Gary D. Westfall, Mc Graw Hill, 2014
- Paul E. Tippens, Physics 7th Edition. Mc Graw Hill, 2013
- Physics for scientists and engineers : a strategic approach / Randall D. Knight, Boston, MA : Pearson, 2013
- Giancoli, D.C. Physics for Scientists and Engineers: with Modern Physics (4th Edition). Pearson Prentice Hall, 2013

Force

- Force, F ("push" or "pull") : interaction between object-object or object-environment.
- It is a vector quantity. (involving magnitude \& direction)
- Unit of F is Newton (N) or kgms^{-2}

Types of forces

1. Normal force -An object in rests on the surface always have a force push back. (directed perpendicular)
2. Frictional forces motion along the surface can be resist the frictional forces. (directed parallel)
(a) Normal force $\overrightarrow{\boldsymbol{n}}$: When an object rests or pushes on a surface, the surface exerts a push on
it that is directed perpendicular to the surface.

(b) Friction force \vec{f} : In addition to the normal force, a surface may exert a frictional force on an object, directed parallel to the surface.

by Farah Hanani binti Zulkifli
http://ocw.ump.edu.my/enrol/index.php?id=461
(c) Tension force \vec{T} : A pulling force exerted on an object by a rope, cord, etc.
3. Tension forces Force exerted on an object through cable or cord is called tension.
4. Weight - The pull
of gravity on an object.
(d) Weight \vec{w} : The pull of gravity on an object is a long-range force (a force that acts over a distance).

Newton's 1st Law

- An object at rest remains at rest while an object in motion remains in constant motion in a straight line unless there is a force acted on the object (no resultant force).
- Also known as Inertia.

Newton's 2nd Law

- If there is a resultant force acts on an object, the object will move or experience acceleration (if the object in motion).
- The direction of a is always in the direction of $\mathrm{F}_{\text {resultant }}$.
- Knowing that, $a \alpha \mathrm{~F} / \mathrm{m}$
- So, F = ma

Newton's $3^{\text {rd }}$ Law

- Each action force have an equal and opposite reaction force.
- Known as action-reaction pair.

$$
F_{B A}=-F_{A B}
$$

$F_{A B}$

Free Body Diagram

- Simplified sketch of a system.
- Method:

1. Draw a simple sketch of the body/object.
2. Draw all the possible forces acting on the object.
3. Label each force by considered its magnitude and direction.

Remember!

For case involving TENSION (in rope/cable/cord) and SPRING force:

- In free-body diagram, the direction of tension force must be AWAY from the subject focus.

Inclined plane

Nomal forces are always directed perpendicular to the sufface.

- There are two forces (gravitational and normal) that acted on the object that is positioned on an inclined plane.
- Gravitational force: downward direction, $\mathrm{F}_{\mathrm{II}}=m g \sin \theta, \mathrm{~F}_{\mathrm{L}}=$ $m g \cos \theta$
- Normal force: upward direction
- Frictional force will acted in the opposite direction of motion.

Forces of friction

- Force that resist the motion of material in contact with surface.
- Frictional force, $\mathrm{F}_{\mathrm{fr}}=\mu \mathrm{F}_{\mathrm{N}}$ Where,
$\mathrm{F}=\mathrm{Pull}$ of push force that cause the motion on the object
$\mathrm{F}_{\mathrm{N}}=$ normal force
$\mathrm{W}=$ Weight of the object
$\mu=$ Friction's coefficient

See you in Chapter 5!!

