BSP1153
 Mechanics \& Thermodynamics Kinematics (Part 1)

by
Dr. Farah Hanani bt Zulkifli

Faculty of Industrial Sciences \& Technology farahhanani@ump.edu.my

Chapter Description

Expected outcomes

- To understand the concept of kinematics.
- To solve the free fall and projectile problems.
- To solve problems in kinematics.

References

Young, H.D. \& Freeman, R.A. University physics with modern physics (14th ed.) Pearson, 2015

- University physics with modern physics / wolfgang bauer, gary D. Westfall, mc graw hill, 2014
- Paul E. Tippens, physics 7th edition. Mc graw hill, 2013
- Physics for scientists and engineers : a strategic approach / randall D. Knight, boston, MA : pearson, 2013
- Giancoli, D.C. Physics for scientists and engineers: with modern physics (4th edition). Pearson prentice hall, 2013

Motion in One Dimension

- Displacement, position, velocity, speed and acceleration
- Instantaneous Velocity and Speed
- Free Fall

Motion in Two Dimension

- Projectile Motion

Position, displacement, velocity, speed \& acceleration

Position

- A point where an object is located with respect to its reference or origin in a coordinate system.

Position, displacement, velocity, speed \& acceleration

Displacement

- Is the changes of position, Δx in a specified time interval.

$$
\Delta x \equiv x_{f}-x_{i}
$$

Where
${ }^{\circ} \mathrm{X}_{\mathrm{f}}$ is final position

- x_{i} Is initial position
- The value can be +ve or -ve

How that the displacement value be positive or negative?

by Farah Hanani binti Zullkifli http://ocw.ump.edu.my/enrol/index.php?id=461

Example

- Ali walking 70m towards east and then make a Uturn at a distance of 30 m to the west. Calculate the total distance and displacement for his journey.

> Total distance
$=100 \mathrm{~m}$
> Displacement $=40 \mathrm{~m}$
by Farah Hanani binti Zullkifli
http://ocw.ump.edu.my/enrol/index.php?id=461

Speed \& Velocity

- Speed quantify a measurement of a distance travelled by an object at specific interval time.

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time Interval }}
$$

- Velocity measure how fact an object is moving with respect to its magnitude and direction.
Velocity $=\frac{\text { Displacement }}{\text { Time Interval }}$

$$
v_{x, a v g} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{t}-x_{i}}{\Delta t}
$$

Position, displacement, velocity, speed \& acceleration

- Acceleration

- Acceleration is the change of velocity.

$$
\text { Acceleration }=\frac{\text { Velocity }}{\text { Time Interval }}
$$

- Average acceleration is the change of velocity at a specified time interval.

$$
\underset{x, a v g}{a_{x}} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}
$$

- SI Unit for acceleration is ms^{-2}

Instantaneous Velocity

- Shows the velocity of a moving object at one point along a path distance.

Graph of particle's position vs. time
By refer to above graph, the tangent to the curve (at any point) is denote to the instantaneous velocity.

- The instantaneous velocity could be expressed as:

$$
v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

- The value can be +ve, -ve or zero.
- Meanwhile, the instantaneous speed is the magnitude of the instantaneous velocity w/o considered its direction.

Instantaneous Acceleration

- The instantaneous acceleration is the average acceleration of an object as the time interval approaches zero.

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}
$$

- Both velocity as well as acceleration is a rate in which expressed in terms of time.
- Therefore, instantaneous acc. can be expressed as:

$$
a=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

Freely Falling Object

- Objects is said to be fall freely when near the Earth's surface with constant acceleration.
- Galileo Galilei (1564-1642) stated that in the absence of air (due to small resistance effect), all objects fall with the same acceleration.
- This is due to the gravity, g which is equal to $9.81 \mathrm{~ms}^{-2}$

When dealing with freely falling object, we can make use of kinematics equation for constant acceleration

$$
\begin{aligned}
v & =v_{0}+a t \\
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right) \\
\bar{v} & =\frac{v+v_{0}}{2}
\end{aligned}
$$

$\cdot \mathrm{a}=\mathrm{g}=9.80 \mathrm{~ms}^{-2}$
-If the motion is vertical, substitute y in x, y_{o} in x_{0}, $y_{0}=0$ (unless specified)
$\cdot v_{0}$ is initial velocity, x_{0} is initial position $=y_{0}$

$1^{\text {st }}$ case: An object dropped

- The initial velocity, $\mathrm{v}_{\mathrm{o}}=$ zero.
- Let the downward be +ve.
- Refer to kinematic equations:
- Since the motion is vertical, use y instead of x since.
$-a_{y}=g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{o}}=0 \\
& \mathrm{a}=g
\end{aligned}
$$

$2^{\text {nd }}$ situation- An object thrown downward

- $\mathrm{a}_{\mathrm{y}}=g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- Initial velocity $\neq 0$
- With the downward be +ve.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{o}} \neq 0 \\
& \mathrm{v}_{\mathrm{o}}=+\mathrm{ve} \\
& \mathrm{a}=g
\end{aligned}
$$

$3^{\text {rd }}$ situation : an object thrown upward

- Let direction be positive at any point above the release point and negative at any point below the release point
- The initial velocity is moving upward \rightarrow so +ve
- The instantaneous velocity at the max. height, $h=$ zero
- Pay attention, the $\mathrm{a}_{\mathrm{y}}=-g=-$ $9.81 \mathrm{~m} / \mathrm{s}^{2}$ in the whole motion.

See you in Next Chapter!

