

BSP1153 Mechanics & Thermodynamics Kinematics (Part 1)

by Dr. Farah Hanani bt Zulkifli

Faculty of Industrial Sciences & Technology farahhanani@ump.edu.my

Chapter Description

Expected outcomes

- To understand the concept of kinematics.
- To solve the free fall and projectile problems.
- To solve problems in kinematics.

References

- Young, H.D. & Freeman, R.A. University physics with modern physics (14th ed.) Pearson, 2015
- University physics with modern physics / wolfgang bauer, gary
 D. Westfall, mc graw hill, 2014
- Paul E. Tippens, physics 7th edition. Mc graw hill, 2013
- Physics for scientists and engineers : a strategic approach / randall D. Knight, boston, MA : pearson, 2013
- Giancoli, D.C. Physics for scientists and engineers: with modern physics (4th edition). Pearson prentice hall, 2013

by Farah Hanani binti Zullkifli

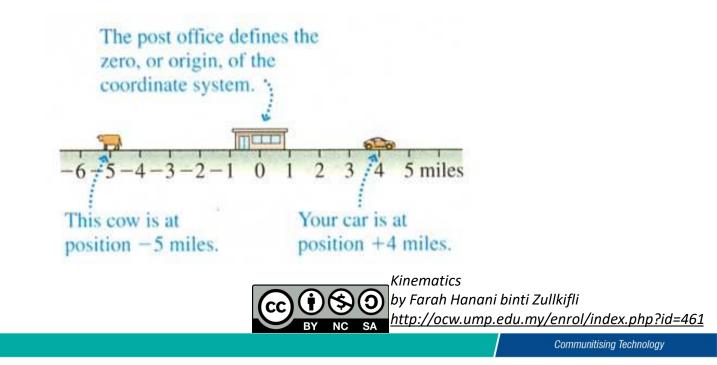
Kinematics

<u>http://ocw.ump.edu.my/enrol/index.php?id=461</u>

CHAPTER 3 KINEMATICS

Motion in One Dimension

 Displacement, position, velocity, speed and acceleration
 Instantaneous Velocity and Speed
 Free Fall Motion in Two Dimension • Projectile Motion


Kinematics by Farah Hanani binti Zullkifli <u>http://ocw.ump.edu.my/enrol/index.php?id=461</u>

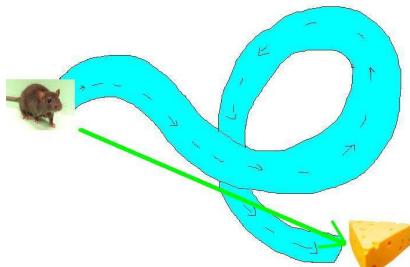
Communitising Technology

Position, displacement, velocity, speed & acceleration

Position

• A point where an object is located with respect to its reference or origin in a coordinate system.

Position, displacement, velocity, speed & acceleration


Displacement

• Is the changes of position, Δx in a specified time interval.

$$\Delta \mathbf{x} \equiv \mathbf{x}_f - \mathbf{x}_i$$

Where

- x_f is final position
- x_i Is initial position


The value can be +ve or -ve

How that the displacement value be positive or negative?

Example

Ali walking 70m towards east and then make a Uturn at a distance of 30m to the west. Calculate the total distance and displacement for his journey.

Speed & Velocity

 Speed quantify a measurement of a distance travelled by an object at specific interval time.

Speed =
$$\frac{\text{Distance}}{\text{Time Interval}}$$

Velocity measure how fact an object is moving with respect to its magnitude and direction.

$$Velocity = \frac{\text{Displacement}}{\text{Time Interval}} V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

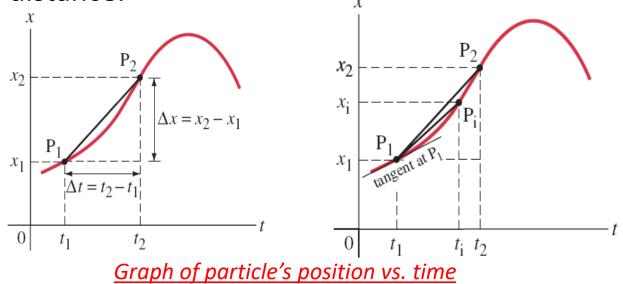
$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

$$V_{x,avg} \equiv \frac{\Delta x}{\Delta t} = \frac{X_f - X_i}{\Delta t}$$

Position, displacement, velocity, speed & acceleration

- Acceleration
 - Acceleration is the change of velocity.


$$Acceleration = \frac{Velocity}{Time Interval}$$

 Average acceleration is the change of velocity at a specified time interval.

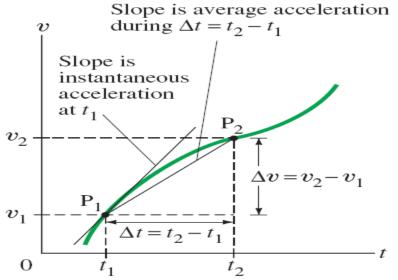
$$a_{x,avg} \equiv \frac{\Delta V_x}{\Delta t} = \frac{V_{xf} - V_{xi}}{t_f - t_i}$$
SI Unit for acceleration is ms⁻²

Instantaneous Velocity

Shows the velocity of a moving object at one point along a path distance.

By refer to above graph, the tangent to the curve (at any point) is denote to the instantaneous velocity.

• The instantaneous velocity could be expressed as: $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$


- The value can be +ve, -ve or zero.
- Meanwhile, the instantaneous speed is the magnitude of the instantaneous velocity w/o considered its direction.

Instantaneous Acceleration

The instantaneous acceleration is the average acceleration of an object as the time interval approaches zero.

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}.$$



- Both velocity as well as acceleration is a rate in which expressed in terms of time.
- Therefore, instantaneous acc. can be expressed as:

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

Freely Falling Object

- Objects is said to be fall freely when near the Earth's surface with constant acceleration.
- Galileo Galilei (1564-1642) stated that in the absence of air (due to small resistance effect), all objects fall with the same acceleration.
- This is due to the gravity, g which is equal to 9.81 ms⁻²

When dealing with freely falling object, we can make use of kinematics equation for constant acceleration

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} at^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

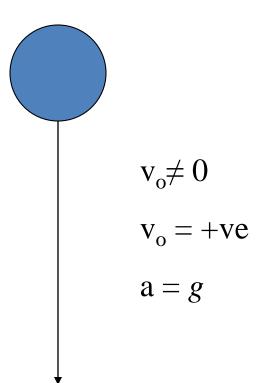
$$\overline{v} = \frac{v + v_0}{2}.$$

•a = g = 9.80 ms⁻² •If the motion is vertical, substitute y in x, y_o in x_o, y_o = 0 (unless specified) •v_o is initial velocity, x_o is initial position = y_o

1st case: An object dropped

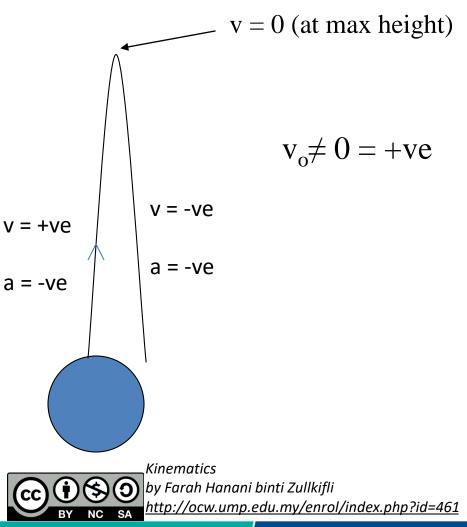
- The initial velocity, $v_o = zero$.
- Let the downward be +ve.
- Refer to kinematic equations:
 - Since the motion is vertical, use y instead of x since.

$$-a_v = g = 9.81 \text{ m/s}^2$$


Kinematics by Farah Hanani binti Zullkifli http://ocw.ump.edu.my/enrol/index.php?id=461

 $v_0 = 0$

a = g


2nd situation- An object thrown downward

- $a_y = g = 9.81 \text{ m/s}^2$
- Initial velocity $\neq 0$
- With the downward be +ve.

3rd situation : an object thrown upward

- Let direction be positive at any point above the release point and negative at any point below the release point
- The initial velocity is moving upward → so +ve
- The instantaneous velocity at the max. height, h = zero
- Pay attention , the $a_y = -g = -$ 9.81 m/s² in the whole motion.

See you in Next Chapter!

Kinematics by Farah Hanani binti Zullkifli <u>http://ocw.ump.edu.my/enrol/index.php?id=461</u>

Communitising Technology