Universiti Malaysia PAHANG	SUBJECT: Mechanics \& Thermodynamics			MARKS:/10
	TOPIC: Vectors ASSESSMENT: QUIZ	CODE: BSP1153		
		NO: 1	DURATION: 15 MINUTES	
NAME:			STUDENT ID:	

Answer ALL questions.

1. The following vectors have the length 4.0 units. What are the x - and y-components of this vector.
(4 Marks)

x-component: $4 \cos 120^{\circ}=-2$
y-component: $4 \sin 120^{\circ}=3.46$

Figure 1
2. Given that $\mathbf{A}=-5 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ and $\mathrm{B}=-2 \mathbf{j}-2 \mathbf{k}$.
i) Find the magnitude of \mathbf{A} and \mathbf{B}.

$$
\begin{aligned}
& A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}=\sqrt{(-5)^{2}+(-3)^{2}+(2)^{2}}=6.164 \\
& B=\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}=\sqrt{(0)^{2}+(-2)^{2}+(-2)^{2}}=2.828
\end{aligned}
$$

ii) Find the dot product of \mathbf{A} and \mathbf{B}.
(2 Marks)
$\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=(-5)(0)+(-3)(-2)+(2)(-2)=2$
iii) Find the angle between \mathbf{A} and \mathbf{B}.

$$
\cos \phi=\frac{\mathbf{A} \cdot \mathbf{B}}{A B}=\frac{2}{(6.164)(2.828)}=0.114
$$

$$
\phi=83.4^{\circ}
$$

