

BSP1153 Mechanics & Thermodynamics Physics & measurement

by Dr. Farah Hanani bt Zulkifli

Faculty of Industrial Sciences & Technology farahhanani@ump.edu.my

Chapter Description

Expected Outcomes

- To resolve physical quantity and international systems of measurement
- To perform the dimensional analysis
- To solve problems involving unit conversion

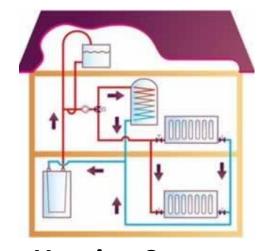
References

- Young, H.D. & Freeman, R.A. University Physics with Modern Physics (14th Ed.) Pearson, 2015
- University physics with modern physics / Wolfgang Bauer, Gary
 D. Westfall, Mc Graw Hill, 2014
- Paul E. Tippens, Physics 7th Edition. Mc Graw Hill, 2013
- Physics for scientists and engineers: a strategic approach / Randall D. Knight, Boston, MA: Pearson, 2013
- Giancoli, D.C. Physics for Scientists and Engineers: with Modern Physics (4th Edition). Pearson Prentice Hall, 2013

Content #1

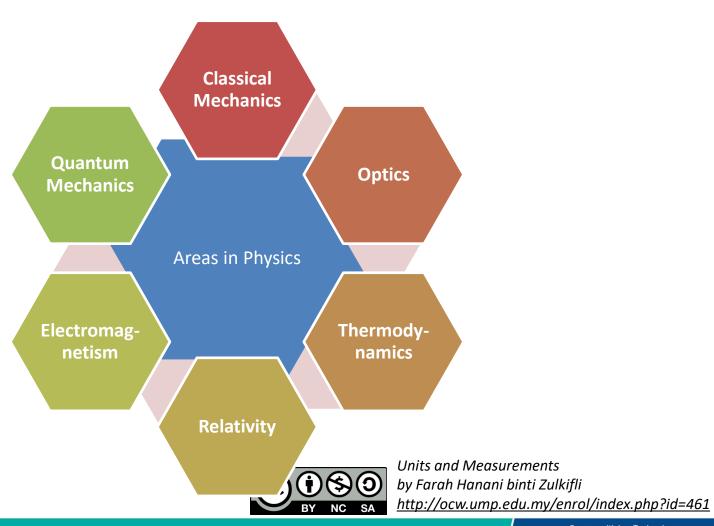
- 1.1 Units, Standard and SI Systems
 - 1.1.1 Standard of length, mass and tig
 - 1.1.2 Unit Prefix
- 1.2 Dimensional Analysis
- 1.3 Unit Conversions
- 1.4 Significant figures

What is Physics?


Physics is one of the most fundamental of sciences involving the observation of the phenomena in nature such as;

- Ball falling from the top of building
- Two cars collide each other

A boy is climbing a ladder



Units and Measuldeating System by Farah Hanani binti Zulkifli http://ocw.ump.edu.my/enrol/index.php?id=461

Structure design

Medical imaging systems

Communitising Technology

Physical quantity

- Any number that is used to describe a physical (e.g. object) phenomenon (e.g. weight, height, distances) quantitatively.
- The measurement of any QUANTITY is made relative to a particular standard or unit.
- UNIT (e.g., meter, kilogram, hour) is used as a standard for measurement of the same physical quantity.

Physical quantities must includes:

- symbol
- number value
- units of measurement

For example:

Height of Ahmad, H is 1.40 m. Therefore,

H represents the symbol

1.40 represents the number value

m represents the unit

Standards and units

International system of units (S.I)

- Formerly known as "metric system".
- The most common unit used by scientists and engineers around the world.
- 1960 known as International System.

Quantity	SI unit
Length	meter
Mass	kilogram
Time	second
Temperature	Kelvin
Electric current	Ampere
Luminous Intensity	Candela
Amount of substance	mole

Unit prefix

- ✓ Refer to the powers of 10.
- ✓ Usually express multiples of <u>10</u> or <u>1/10</u> in <u>exponential</u> notation.
- ✓ Each prefix has a <u>specific name</u> and <u>abbreviation</u>.

E.g.,
$$1\,000\,000 = 10^6 \, (\frac{\text{mega}}{\text{micro}}, \, \text{m})$$

 $1/1\,000\,000 = 10^{-6} \, (\frac{\text{micro}}{\text{micro}}, \, \text{m})$

✓ In physics, it is usually used with any basic units.

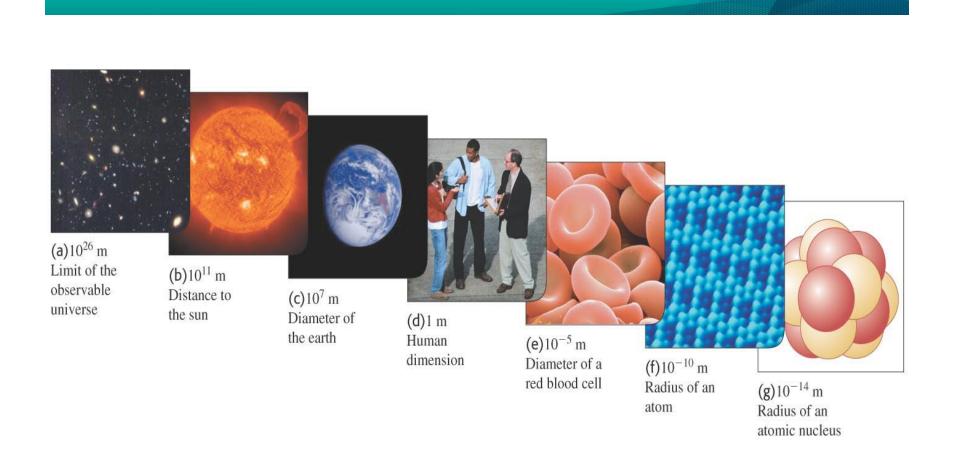

E.g. kilometer, mililiter

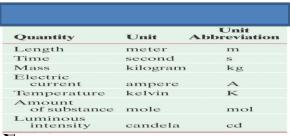
TABLE 1-	-4 Metric (SI) Pr	efixes
Prefix	Abbreviation	Value
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro†	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	z	10^{-21}
yocto	У	10^{-24}

 $^{^{\}dagger}\mu$ is the Greek letter "mu."

Base quantities

There are three (3) fundamental basic quantities used in physics:

Length SI Unit - Meter, m


What? - Distance between two points in space.

Mass (SI Unit - kilogram, kg)

 What? How heavy the object w/o considered the gravity.

<u>Time</u> (SI unit - second, s)

What?

by Farah Hanani binti Zulkifli
http://ocw.ump.edu.my/enrol/index.php?id=461

Derived quantities

- Quantities that can be prompted from various of basic quantities.
- E.g., pressure, density, area,

Dimensional Analysis

- Technique to ensure the equation is expressed correctly.
- Dimensions:
 - Includes → Length [L], Mass [M], Time [T].
 - denoted with square brackets.
 - can be treated as algebraic quantities.
 - must have the same dimensions for both sides of equation.

Continued...

- is not a CONSTANT.
- can have many actual units. e.g.: dimension of area always $[L^2]$: the unit can be m^2 , ft^2 , cm^2 and so on.
- are remain same even though the formula for a quantity is different.

e.g. : area of a triangle of base b and height h is $A = \frac{1}{2}bh$, whereas area of circle is πr^2 . Their dimensions are always $[L^2]$.

Does $x = \frac{1}{2} at^2$ is a correct expressions?

First: Confirm the dimensions on both LHS and RHS.

$$L = \frac{L}{T^2} \cdot T^2 = L$$

Second: If the T²'s cancel, the left hand side (LHS) equation will leave L at the equation.

Third: So, Left Hand side (LHS) = Right Hand Side (RHS)

Conclusion: Equation is dimensionally correct.

Unit Conversion

 In a several situation, when the units are not constant, it can be converted to a same unit.

E.g.,
$$1 \text{ m} = 39.37 \text{ in.} = 3.281 \text{ ft.}$$

 $1 \text{ in.} = 0.0254 \text{ m} = 2.54 \text{ cm}$

- Remember!!
 - Units can be treated as algebraic quantity.
 - Units can also being cancel each other out.
 - You are advised to carry the units through the entire calculation. MUST!!

E.g., Find the length of 10.0 inch ruler in cm. Knowing that 1 in. = 2.54 cm

$$10.0 \, \text{in.} = ? \, \text{cm}$$

$$10.0 \, in. = \left(\frac{2.54 cm}{1.0 in.}\right) = 25.4 cm$$
 Find the distance of the 1.00 mile travelling when it expressed in km.

if 1 mile = 1609m , 1 km = 1000 m

Answer: 1.61 km

Conversion Factors

Length

	m	cm	km	in.	ft	mi
1 meter	1	10^{2}	10^{-3}	39.37	3.281	6.214×10^{-4}
1 centimeter	10^{-2}	1	10^{-5}	0.393 7	3.281×10^{-2}	6.214×10^{-6}
1 kilometer	10^{3}	10^{5}	1	3.937×10^{4}	3.281×10^{3}	0.621 4
1 inch	2.540×10^{-2}	2.540	2.540×10^{-5}	1	8.333×10^{-2}	1.578×10^{-5}
1 foot	0.304 8	30.48	3.048×10^{-4}	12	1	1.894×10^{-4}
1 mile	1 609	1.609×10^5	1.609	6.336×10^{4}	5 280	1

Mass

	kg	g	slug	u
1 kilogram	1	10^{3}	6.852×10^{-2}	6.024×10^{26}
1 gram	10^{-3}	1	6.852×10^{-5}	6.024×10^{23}
1 slug	14.59	1.459×10^{4}	1	8.789×10^{27}
1 atomic mass unit	1.660×10^{-27}	1.660×10^{-24}	$1.137 imes 10^{-28}$	1

Note: 1 metric ton = 1 000 kg.

Time

	s	min	h	day	уг
1 second	1	$1.667 imes 10^{-2}$	2.778×10^{-4}	1.157×10^{-5}	3.169×10^{-8}
1 minute	60	1	1.667×10^{-2}	6.994×10^{-4}	1.901×10^{-6}
1 hour	3 600	60	1	4.167×10^{-2}	1.141×10^{-4}
1 day	$8.640 imes 10^{4}$	1 440	24	1	2.738×10^{-5}
1 year	3.156×10^{7}	5.259×10^{5}	8.766×10^{3}	365.2	1

Speed				
	m/s	cm/s	ft/s	mi/h
1 meter per second	1	10^{2}	3.281	2.237
1 centimeter per second	10^{-2}	1	3.281×10^{-2}	2.237×10^{-2}
1 foot per second	0.3048	30.48	1	0.681 8
1 mile per hour	0.447 0	44.70	1.467	1

Note: 1 mi/min = 60 mi/h = 88 ft/s.

-	Cr.	11	2	
		•	•	•

	N	lb
1 newton 1 pound	1 4.448	0.224 8 1

continued

Work, Energy, Heat				
	J	ft·lb	eV	
l joule	1	0.737 6	6.242×10^{18}	
1 foot-pound	1.356	1	8.464×10^{18}	
1 electron volt	1.602×10^{-19}	1.182×10^{-19}	1	
1 calorie	4.186	3.087	2.613×10^{19}	
1 British thermal unit	$1.055 imes 10^{3}$	7.779×10^{2}	6.585×10^{21}	
1 kilowatt hour	3.600×10^{6}	2.655×10^{6}	2.247×10^{25}	
	cal	Btu	kWh	
1 joule	0.238 9	9.481×10^{-4}	2.778×10^{-7}	
1 foot-pound	0.323 9	1.285×10^{-3}	3.766×10^{-7}	
1 electron volt	3.827×10^{-20}	1.519×10^{-22}	4.450×10^{-26}	
1 calorie	1	3.968×10^{-3}	1.163×10^{-6}	
1 British thermal unit	2.520×10^{2}	1	2.930×10^{-4}	
1 kilowatt hour	8.601×10^{5}	3.413×10^{2}	1	

