PAHANG

Exercise

Kinematics Part1

by
 Siti Aisah binti Harun
 Faculty of Industry Science \&Technology aishahh@ump.edu.my

Exercise 1

Given $\vec{A}=10 \hat{i}-2 \hat{j}-4 \hat{k}$ and $\vec{B}=-2 \hat{i}+5 \hat{j}-10 \hat{k}$. Calculate the vector cross product of this two vectors. Ans : $40 \hat{i}+108 \hat{j}+46 \hat{k}$

Exercise 2

A school bus travel at a constant $50 \mathrm{~km} / \mathrm{h}$ for 100 km . It then speeds up to $100 \mathrm{~km} / \mathrm{h}$ and is driven another 100 km . What is the bus's average speed for the 200 km trip? Ans: 66.7 km

Exercise 3

A wooden toy train moving in a straight line. Given the equation for its velocity, $\mathrm{v}_{\mathrm{x}}=\left(40-5 \mathrm{t}^{2}\right) \mathrm{m} / \mathrm{s}$ where t is a time (second). Calculate the
(a) average acceleration during the time interval $\mathrm{t}=0$ and $\mathrm{t}=2.0 \mathrm{~s}$. Ans $:-10 \mathrm{~m} / \mathrm{s}^{2}$
(b) instantaneous acceleration at $\mathrm{t}=2.0 \mathrm{~s}$. Ans: $-20 \mathrm{~m} / \mathrm{s}^{2}$

Exercise 4

Given the position of the nucleus is at $x=3+2.5 t+6 t^{3}$ where x is in meter and t in second. Calculate Instantaneous velocity at $\mathrm{t}=3.00 \mathrm{~s}$. Ans $: 164.5 \mathrm{~m} / \mathrm{s}$

