

PHYSICS

Physics & Measurement

Siti Aisah binti Harun
Faculty of Industry Science & Technology
aishahh@ump.edu.my

Chapter Description

Aims

 Student can understand and apply appropriate unit in measurement, know how to use dimension analysis and can solve the physics problems related with unit conversion.

Expected Outcomes

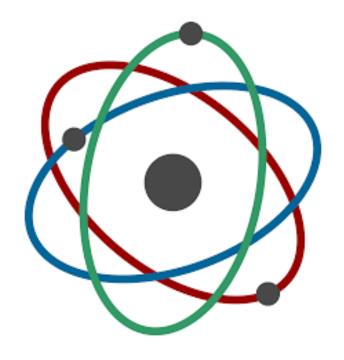
- Should be able to use physical quantity and International systems of measurement.
- Should be able to perform the dimensional analysis.
- Should be able to solve problems involving unit conversion.

References

- Cutnell, J. D. and Johnson, K. W., 2010. Physics, 8th edition, Wiley, Asia.
- Young, H. D. and Freedman, R. A., 2006. University Physics with Modern Physics. 12th edition, Pearson, San Francisco.
- Giancoli, D. C., 2009. Physics for scientists and engineers: with modern Physics. Pearson Prentice Hall, United States of America.
- Halliday, D. and Resnick, R., 2008. Fundamentals of Physics Extended. 8th edition. Wiley International Student Edition, Asia.

Content

- 1.1 Standard of length, mass and time
- 1.2 Dimension analysis
- 1.3 Conversion of unit


Physics

What is Physics

- Greek word phusika, meaning "of nature"
- Physics is the systematic study of the way energy, matter and objects travels, changes and interacts.

Physics

- Six major areas in Physics
 - 1.Classical Mechanics
 - 2.Relativity
 - 3.Optics
 - 4.Thermodynamics
 - 5. Electromagnetism
 - 6.Quantum Mechanics

Physics

The important of Physics

Fig.1: Structure design

Fig. 3: Medical imaging systems

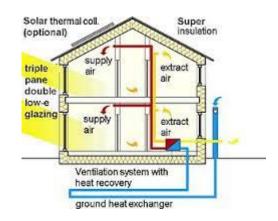
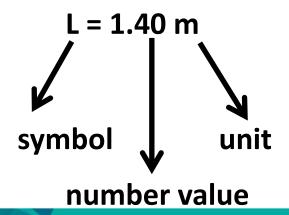
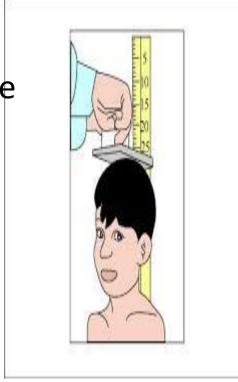


Fig. 2: Heating System


Standard of length, mass and time


Physical quantity

- → can be expressed in any number (magnitude) to show physical phenomenon quantitatively
- → Unit is used as a standard for measurement of the same physical quantity

- → All physical quantities have:
 - (*) a symbol
 - (*) number value that shows magnitude
 - (*) a unit of measurement

Height of boy:

Standard of length, mass and time

- International system of units (S.I)
- → The most common unit used by engineers and scientists is International System of Units, SI Unit
- is normally called the "metric system",
- → since 1960, it is known as SI (abbreviation for its French name, *Système International*) or International System.

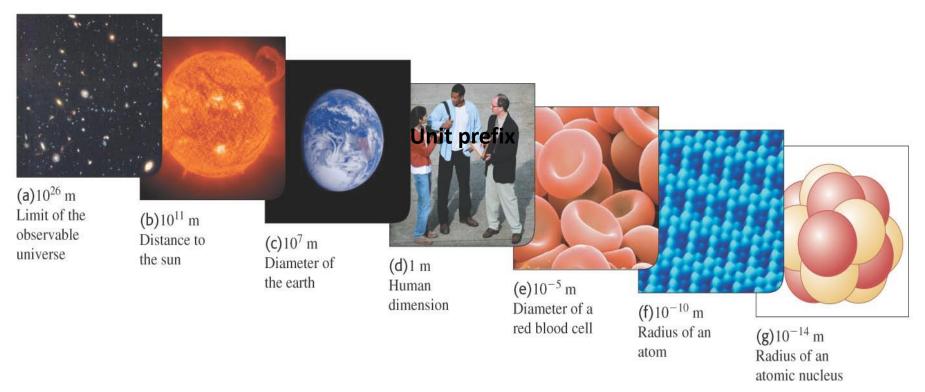
Quantity	SI Unit
Length	meter
Mass	kilogram
Time	second
Temperature	Kelvin
Electric Current	Ampere
Luminous Intensity	Candela
Amount of Substance	mole

e/view.php?id=458

nitising Technology

Standard of length, mass and time

Unit Prefix


- → Prefixes correspond to powers of 10
- → Commonly wrote as a multiples of 10 or 1/10 in exponential notation:

$$1000 = 10^3$$
, $1/1000 = 10^{-3}$

- → Each prefix
 - > specific name
 - specific abbreviation
 - used with any basic units
 - multipliers of the basic unit

→ Unit prefixes size the unit to fit the situation.

Standard of length, mass and time

Base quantities

→ In mechanics, 3 fundamental

(Basic) quantities are used

i) Length

ii) Mass

iii) Time

L			
	Quantity	Unit	Unit Abbreviation
	Length	meter	m
	Time	second	S
	Mass	kilogram	kg
	Electric current	ampere	A
	Temperature	kelvin	K
	Amount of substance	mole	mol
	Luminous intensity	candela	cd

Base Quantity

• i) Length

- is the distance between two points in space
- → SI Unit meter, m
- → One meter is defined as the distance that light travels in a vacuum in 1/299,792,458 second.

Base Quantity

ii) Mass

- → Mass is how heavy something is without gravity
- → SI Unit kilogram, kg
- → One kilogram (kg) is defined as the mass of a specific platinum—iridium alloy cylinder kept at the International Bureau of Weights and Measure, France.

Base Quantity

iii) Time

- is a duration between two events
- → SI Unit seconds, s
- → One second is defined as the time for a certain type electromagnetic wave emitted by cesium-133 atoms to undergo 9 192 631 770 wave cycles

Standard of length, mass and time

Derived quantities

- are quantities from a combination of basic quantities
- i.e : speed, acceleration, volume, density,

Dimensional Analysis

- → Is a method to analysis whether the equation is correct or incorrect or to help in deriving an equation
 - → Square bracket is using to represent a dimension
 - Time [T]
 - Mass [M]
 - Length [L]
 - → Dimensions (time, mass, length, combinations) can be treated as algebraic quantities
 - Divide, multiply, add, subtract
- Any equation can be correct only if both sides of the equation have the same dimensions

 Any equation can be correct only if both sides of the equation by Siti Aisah Harun http://ocw.ump.edu.mv/course/view.php?id=458

Dimensional Analysis

- There are no dimensions for constant
- → Each dimension can have many actual units
 e.g.: dimension of area always [L²]: the unit can be
 m², ft², cm² and so on.
- → The dimension can be same although the formula for a quantity is different
 - e.g. : area of circle is πr^{2} , whereas area of a triangle is $A = \frac{1}{2}bh$. Their dimensions are always $[L^2]$

 \rightarrow Check the dimensions on each side for the equation $x = \frac{1}{2} at^2$

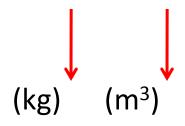
•

$$L = \frac{L}{T^2} \cdot T^2 = L$$

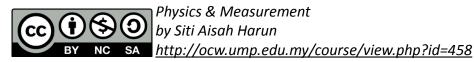

- \rightarrow Thus, LHS = RHS
- → Hence, the equation is dimensionally correct.

 Write down the basic dimensions of pressure, pressure is defined as

$$p = \frac{\text{Force}}{\text{Area}}$$


$$= \frac{[M][L] \begin{bmatrix} 1/T^2 \end{bmatrix}}{[L.L]}$$

$$= [\mathbf{M}] \lceil L^{-1} \rceil \lceil T^{-2} \rceil$$



Find the SI unit of DENSITY.

Density = mass / volume $\rho = m / v$ $[\rho] = [M] / [L^3]$

 $= kg/m^3 @ kg m^{-3}$

Conversion Unit

- → You must convert the units if the units are not consistent.
- → The units can cancel to each other (treated as algebraic quantities)

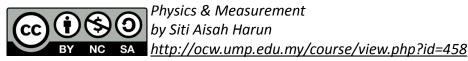
For example:

1 mile = 1.609 km = 1609 m

1 ft = 30.48 cm = 0.304 m

1 m = 3.281 ft = 39.37 inch

1 in. = 2.45 cm = 0.0254 m



Conversion Unit

- → Every time, include units in your calculation for each physical quantity.
- → Multiply original value by a ratio equal to one
- → e.g.:- Express the length of 15.0 inch ruler in cm.

 Given 1 inch = 2.54 cm

$$15.0 in \left(\frac{2.54 cm}{1 in}\right) = 38.1 cm$$

→ What is the distance of the 1.00 mile travelling when it expressed in km

if 1 mile = 1609 m 1 km = 1000 m

Answer :- 1.61 km

 \rightarrow Given the density of lead is 11.3 g/cm³. Determine this value in kg/m³

Convert the units from g to kg and from cm³ to m³.

$$1 \text{kg} = 1000 \text{gm}$$

$$1m = 100 cm$$

11.3
$$\frac{g}{\text{cm}^3} \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \times \left(\frac{100 \text{ cm}}{1 \text{ m}}\right)^3 = 1.13 \times 10^4 \frac{\text{kg}}{\text{m}^3}$$

Author Information

Dr. Saifful Kamaluddin bin Muzakir Mazni binti Mustafa Nabilah binti Alias

