PAHANG

PHYSICS

Physics \& Measurement

by
 Siti Aisah binti Harun
 Faculty of Industry Science \&Technology aishahh@ump.edu.my

Chapter Description

- Aims
- Student can understand and apply appropriate unit in measurement, know how to use dimension analysis and can solve the physics problems related with unit conversion.
- Expected Outcomes
- Should be able to use physical quantity and International systems of measurement.
- Should be able to perform the dimensional analysis.
- Should be able to solve problems involving unit conversion.
- References
- Cutnell, J. D. and Johnson, K. W., 2010. Physics, 8th edition, Wiley, Asia.
- Young, H. D. and Freedman, R. A., 2006. University Physics with Modern Physics. 12th edition, Pearson, San Francisco.
- Giancoli, D. C., 2009. Physics for scientists and engineers: with modern Physics. Pearson Prentice Hall, United States of America.
- Halliday, D. and Resnick, R., 2008. Fundamentals of Physics Extended. 8th edition. Wiley International Student Edition, Asia.

Content

- 1.1 Standard of length, mass and time
- 1.2 Dimension analysis
- 1.3 Conversion of unit

Physics

- What is Physics
- Greek word phusika, meaning "of nature"
- Physics is the systematic study of the way energy, matter and objects travels, changes and interacts.

Physics

- Six major areas in Physics
1.Classical Mechanics
2.Relativity
3.Optics
4.Thermodynamics
5.Electromagnetism
6.Quantum Mechanics

Physics

- The important of Physics

Fig. 1 : Structure design

Fig. 2 : Heating System

Fig. 3 : Medical imaging systems

Standard of length, mass and time

- Physical quantity

\rightarrow can be expressed in any number (magnitude) to show physical phenomenon quantitatively
\rightarrow Unit is used as a standard for measurement of the same physical quantity

- \rightarrow All physical quantities have:
(*) a symbol
(*) number value that shows magnitude (*) a unit of measurement

Example

Height of boy:

Standard of length, mass and time

- International system of units (S.I)

\rightarrow The most common unit used by engineers and scientists is International System of Units, SI Unit
\rightarrow is normally called the "metric system",
\rightarrow since 1960, it is known as SI (abbreviation for its French name, Système International) or International System.

Quantity	SI Unit
Length	meter
Mass	kilogram
Time	second
Temperature	Kelvin
Electric Current	Ampere
Luminous Intensity	Candela
Amount of Substance	mole

Standard of length, mass and time

- Unit Prefix
\rightarrow Prefixes correspond to powers of 10
\rightarrow Commonly wrote as a multiples of 10 or $1 / 10$ in exponential notation: $1000=10^{3}, 1 / 1000=10^{-3}$
\rightarrow Each prefix
$>$ specific name
$>$ specific abbreviation
$>$ used with any basic units
> multipliers of the basic unit

\rightarrow Unit prefixes size the unit to fit the situation.

Physics \& Measurement by Siti Aisah Harun
http://ocw.ump.edu.my/course/view.php?id=458

Standard of length, mass and time

- Base quantities

\rightarrow In mechanics, 3 fundamental

Quantity	Unit	Unit Abbreviation
Length	meter	m
Time	second	s
Mass	kilogram	kg
Electric current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

i) Length
ii) Mass
iii) Time

Base Quantity

i) Length

\rightarrow is the distance between two points in space
\rightarrow SI Unit - meter, m
\rightarrow One meter is defined as the distance that light travels in a vacuum in $1 / 299,792,458$ second.

Base Quantity

\rightarrow Mass is how heavy something is without gravity
\rightarrow SI Unit - kilogram, kg
\rightarrow One kilogram (kg) is defined as
the mass of a specific platinum-iridium
alloy cylinder kept at the International Bureau of Weights and Measure ,
France.

Base Quantity

iii) Time

\rightarrow is a duration between two events
\rightarrow SI Unit - seconds, s
\rightarrow One second is defined as the time for a certain type electromagnetic wave emitted by cesium-133 atoms to undergo 9192631770 wave cycles

Standard of length, mass and time

- Derived quantities

\rightarrow are quantities from a combination of basic quantities
\rightarrow i.e : speed, acceleration, volume, density,

Dimensional Analysis

\rightarrow Is a method to analysis whether the equation is correct or incorrect or to help in deriving an equation
\rightarrow Square bracket is using to represent a dimension

- Time [T]
- Mass [M]
- Length [L]
\rightarrow Dimensions (time, mass, length, combinations) can be treated as algebraic quantities
- Divide, multiply, add, subtract
\rightarrow Any equation can be correct only if both sides of the equation have the same dimensions

Dimensional Analysis

\rightarrow There are no dimensions for constant
\rightarrow Each dimension can have many actual units
e.g.: dimension of area always [L^{2}]: the unit can be $\mathrm{m}^{2}, \mathrm{ft}^{2}, \mathrm{~cm}^{2}$ and so on.
\rightarrow The dimension can be same although the formula for a quantity is different
e.g. : area of circle is πr^{2}, whereas area of a triangle is $A=1 / 2 \mathrm{bh}$. Their dimensions are always [L^{2}]

Example 1

\rightarrow Check the dimensions on each side for the equation $x=1 / 2 a t^{2}$

$$
L=\frac{L}{J^{2}} \cdot T^{2}=L
$$

\rightarrow Thus, LHS = RHS
\rightarrow Hence, the equation is dimensionally correct.

Example 2

- Write down the basic dimensions of pressure, pressure is defined as

$$
\mathrm{p}=\frac{\text { Force }}{\text { Area }}
$$

$$
=\frac{[\mathrm{M}][L]\left[1 / T^{2}\right]}{[L . L]}
$$

$$
=[\mathrm{M}]\left[L^{-1}\right]\left[T^{-2}\right]
$$

Example 3

○ Find the SI unit of DENSITY.

$$
\begin{aligned}
& \text { Density }=\text { mass } / \text { volume } \\
& \begin{array}{ll}
\rho & =m \quad / v \\
{[\rho]} & =[M] \quad /\left[L^{3}\right]
\end{array} \\
& \\
& (\mathrm{kg}) \\
& \\
& \\
& \\
& =
\end{aligned}
$$

Conversion Unit

\rightarrow You must convert the units if the units are not consistent.
\rightarrow The units can cancel to each other (treated as algebraic quantities)

For example :
1 mile $=1.609 \mathrm{~km}=1609 \mathrm{~m}$
$1 \mathrm{ft}=30.48 \mathrm{~cm}=0.304 \mathrm{~m}$
$1 \mathrm{~m}=3.281 \mathrm{ft}=39.37 \mathrm{inch}$
$1 \mathrm{in} .=2.45 \mathrm{~cm}=0.0254 \mathrm{~m}$

Conversion Unit

\rightarrow Every time, include units in your calculation for each physical quantity.
\rightarrow Multiply original value by a ratio equal to one
\rightarrow e.g.:- Express the length of 15.0 inch ruler in cm .
Given 1 inch $=2.54 \mathrm{~cm}$

$$
\begin{aligned}
& 15.0 \mathrm{in}=? \mathrm{~cm} \\
& 15.0 \mathrm{in}\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)=38.1 \mathrm{~cm}
\end{aligned}
$$

Example 4

\rightarrow What is the distance of the 1.00 mile travelling when it expressed in km
if 1 mile $=1609 \mathrm{~m}$
$1 \mathrm{~km}=1000 \mathrm{~m}$

Answer :- 1.61 km

Example 5

\rightarrow Given the density of lead is $11.3 \mathrm{~g} / \mathrm{cm}^{3}$. Determine this value in $\mathrm{kg} / \mathrm{m}^{3}$

Convert the units from g to kg and from cm^{3} to m^{3}.
$1 \mathrm{~kg}=1000 \mathrm{gm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$11.3 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right) \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=1.13 \times 10^{4} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Author Information

Dr. Saifful Kamaluddin bin Muzakir Mazni binti Mustafa Nabilah binti Alias

