CHAPTER 5

BEE3143:POWER SYSTEM ANALYSIS- Power flow solution-Newton-Raphson

Expected Outcomes
Able to solve power flow solution using Newton-Raphson technique

Universiti
 Newton-Raphson Power Flow Solution

- Newton-raphson method is found to be more practical and efficient for large power system.
- The number of iterations required to obtain a solution is independent of the system size, but more functional evaluations are required at each iteration.

... Newton-Raphson Power Flow Solutioin

Rewrite the current entering bus i in a typical bus power system in figure below in terms of the bus admittance matrix \rightarrow

$$
\begin{equation*}
I_{i}=\sum_{j=1}^{n} Y_{i j} V_{j} \tag{1}
\end{equation*}
$$

$$
Y_{i j}=\left|Y_{i j}\right| \angle \theta_{i j}=\left|Y_{i j}\right| \cos \theta_{i j}+j\left|Y_{i j}\right| \sin \theta_{i j}=G_{i j}+j B_{i j}
$$

The voltage at a typical bus i

$$
V_{i}=\left|V_{i}\right| \angle \delta_{i}=\left|V_{i}\right|\left(\cos \delta_{i}+j \sin \delta_{i}\right)
$$

Expressing Equation (1) in polar form

$$
I_{i}=\sum_{j=1}^{n}\left|Y_{i j}\right|\left|V_{j}\right| \angle \theta_{i j}+\delta_{j}
$$

The complex conjugate of the power injected at bus i is

$$
\begin{aligned}
P_{i}-j Q_{i} & =V_{i}^{*} I_{i} \\
& =V_{i}^{*} \sum_{j=1}^{n} Y_{i j} V_{j}
\end{aligned}
$$

The complex conjugate of the power in polar form

$$
\begin{aligned}
P_{i}-j Q_{i} & =V_{i}^{*} \sum_{j=1}^{n} Y_{i j} V_{j} \\
& =\left|V_{i}\right| \angle-\delta_{i} \sum_{j=1}^{n}\left|Y_{i j}\right|\left|V_{j}\right| \angle \theta_{i j}+\delta_{j} \\
& =\sum_{j=1}^{n}\left|Y_{i j} V_{i} V_{j}\right| \angle \theta_{i j}+\delta_{j}-\delta_{i}
\end{aligned}
$$

Separating this equation into real and reactive parts

$$
\begin{align*}
& P_{i}=\sum_{j=1}^{n}\left|Y_{i j} V_{i} V_{j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \tag{2}\\
& Q_{i}=-\sum_{j=1}^{n}\left|Y_{i j} V_{i} V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \tag{3}
\end{align*}
$$

Equation (2) and (3) constitute a polar form of the power flow equations. These Eqs. constitute a set of nonlinear algebraic equations in terms of the independent variables, voltage magnitude in per-unit, and phase angle in radians.

Expanding (2) and (3) in Taylor's series about the initial estimate and neglecting all higher order terms results in the following set of linear equations. ...Newton-Raphson Power Flow Solution

Newton-Raphson power flow equations:

- From the previous equation, bus 1 is assumed to be slack bus.
- The Jacobian matrix gives the linearized relationship between small changes in voltage angle and voltage magnitude with the small changes in real and reactive power.
- Elements of Jacobian matrix are the partial derivatives of (2) and (3), evaluated at small changes in voltage angle and voltage magnitude
- From the previous equation, bus 1 is assumed to be slack bus.
- The Jacobian matrix gives the linearized relationship between small changes in voltage angle and voltage magnitude with the small changes in real and reactive power.
- Elements of Jacobian matrix are the partial derivatives of (2) and (3), evaluated at small changes in voltage angle and voltage magnitude
- In short form, it can be written as:

$$
\left[\begin{array}{c}
\Delta P \tag{4}\\
\Delta Q
\end{array}\right]=\left[\begin{array}{ll}
J_{1} & J_{2} \\
J_{3} & J_{4}
\end{array}\right]\left[\begin{array}{c}
\Delta \delta \\
\Delta|V|
\end{array}\right]
$$

Procedure of NR

$\Delta Q_{i}^{(k)} 1 \mathrm{~s}$ calculated from: $\Delta Q_{i}^{(k)}=Q_{i}^{\text {sch }}-Q_{i}^{(k)}$

- For PV buses, $P_{i}^{(k)}$ is calculated from (2) and $\Delta P_{i}^{(k)}$ calculated from
- The element of Jacobian matrix (J1, J2, J3 and J4) are calculated as follows: $\Delta P_{i}^{(k)}=P_{i}^{s c h}-P_{i}^{(k)}$

...Procedure of NR

The diagonal and off-diagonal elements of J_{1} are

$$
\frac{\partial P_{i}}{\partial \delta_{i}}=\sum_{j \neq i}\left|V_{i} V_{j} Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \quad \frac{\partial P_{i}}{\partial \delta_{j}}=-\left|Y_{i j} V_{i} V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right)
$$

The diagonal and off-diagonal elements of J_{2} are

$$
\begin{gathered}
\frac{\partial P_{i}}{\partial\left|V_{i}\right|}=2\left|V_{i} Y_{i i}\right| \cos \theta_{i i}+\sum_{j \neq i}\left|V_{j} Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \\
\frac{\partial P_{i}}{\partial\left|V_{j}\right|}=\left|Y_{i j} V_{i}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right)
\end{gathered}
$$

...Procedure of NR

The diagonal and off-diagonal elements of J_{3} are

$$
\frac{\partial Q_{i}}{\partial \delta_{i}}=\sum_{j \neq i}\left|V_{i} V_{j} Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)
$$

$$
\frac{\partial Q_{i}}{\partial \delta_{j}}=-\left|V_{i} V_{j} Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)
$$

The diagonal and off-diagonal elements of J_{4} are

$$
\frac{\partial Q_{i}}{\partial\left|V_{i}\right|}=-2\left|V_{i} Y_{i i}\right| \sin \theta_{i i}-\sum_{j \neq i}\left|V_{j} Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)
$$

$$
\frac{\partial Q_{i}}{\partial\left|V_{j}\right|}=-\left|V_{i} Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)
$$

...Procedure of NR

- The equation (4) is solved directly by optimally ordered triangular factorization of Gaussian elimination
- The new voltage and phase angle are computed from:

$$
\begin{aligned}
& \delta_{i}^{(k+1)}=\delta_{i}^{(k)}+\Delta \delta_{i}^{(k)} \\
& \left|V_{i}^{(k+1)}\right|=V_{i}^{(k)}+\Delta V_{i}^{(k)}
\end{aligned}
$$

- The process is continued until the residuals $\Delta P_{i}^{(k)}$ and $\Delta Q_{i}^{(k)}$ are less than specified accuracy

