

DUM 2413 STATISTICS & PROBABILITY

CHAPTER 5 CONTINUOUS PROBABILITY DISTRIBUTIONS

PREPARED BY:

DR. CHUAN ZUN LIANG; DR. NORATIKAH ABU; DR. SITI ZANARIAH SATARI FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY chuanzl@ump.edu.my; atikahabu@ump.edu.my; zanariah@ump.edu.my

Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.mv/course/view.php?id=455

EXPECTED OUTCOMES

- Able to determine the expected value, standard deviation and variance of a continuous random variable
- Able to identify the relationship between the normal distribution and the sampling distribution of the mean
- Able to solve the application problems, which involved the normal distribution and the sampling distribution of the mean
- Able to identify the relationship between the Binomial and Poisson distribution with a standard normal distribution

CONTENT

5.1 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DENSITY FUNCTION

5.2 MEAN AND VARIANCE

5.3 NORMAL DISTRIBUTION

5.4 THE CENTRAL LIMIT THEOREM

5.5 NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

5.6 NORMAL APPROXIMATION TO POISSON DISTRIBUTION

Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

5.3 NORMAL DISTRIBUTION

Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

NORMAL DISTRIBUTION vs. STANDARD NORMAL DISTRIBUTION

NORMAL DISTRIBUTION

A continuous random variable, X is said to follow normal distribution with parameters μ and σ^2 denoted by $X \sim N(x; \mu, \sigma^2)$ if $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right); \quad -\infty < x < \infty$ Area=0.5 $-\infty$ μ ω ∞ Mere the mean is μ and variance is σ^2 . STANDARD NORMAL DISTRIBUTION

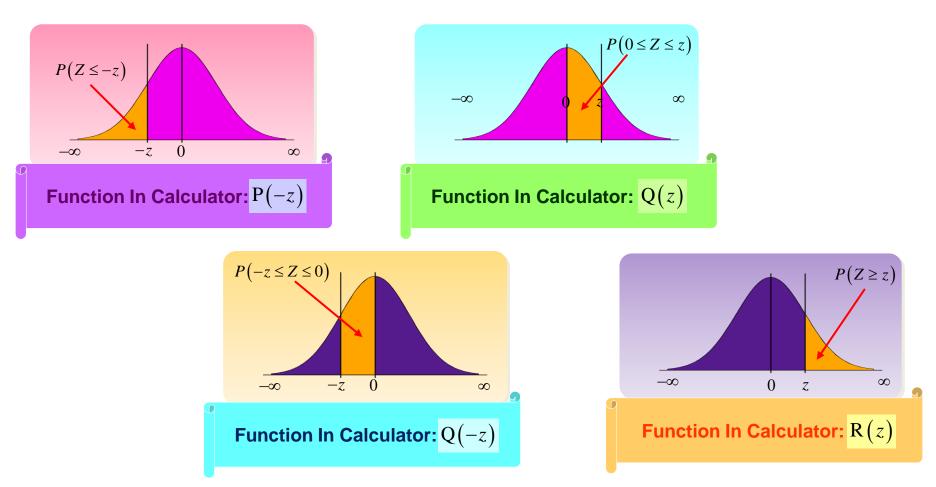
> The normal distribution with $\mu = 0$ and $\sigma = 1$ is referred to as standard normal distribution, $Z \sim N(x; 0, 1)$

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right); \quad -\infty < z < \infty$$
Area=0.5
Area=0.5
Ore, $z = \frac{X - \mu}{\sigma}$
 $0 \quad \infty$

oloav

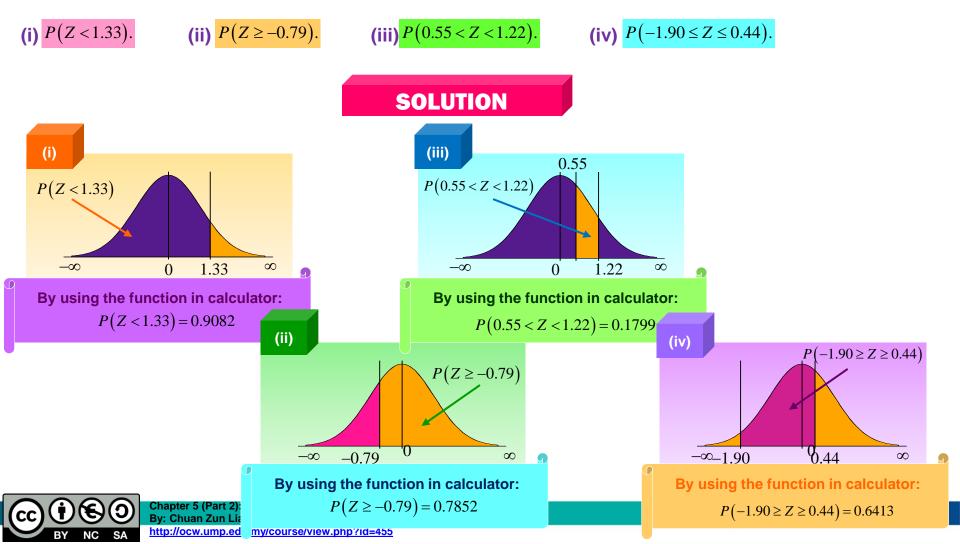
where the z -so

FIND THE TOTAL AREA UNDER THE STANDARD NORMAL USING THE FUNCTIONS IN CALCULATOR

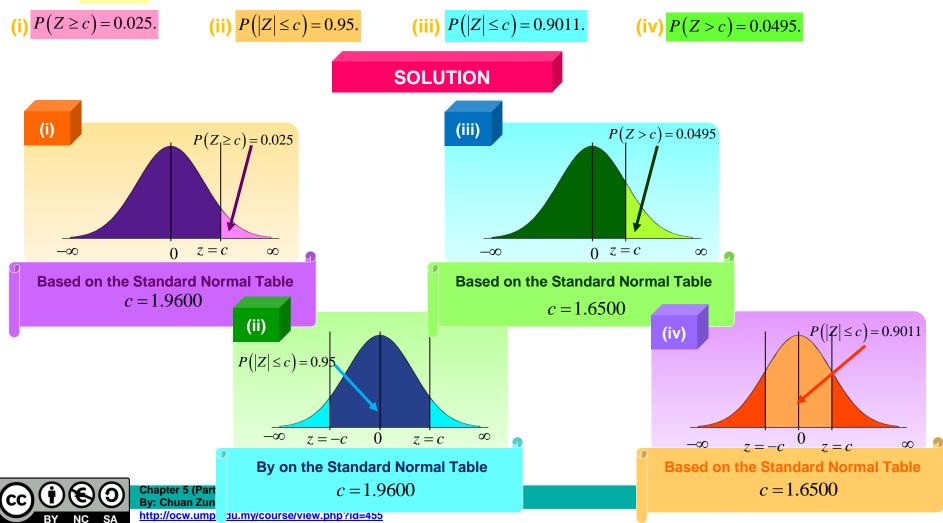


Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

Given that \mathbf{Z} is a continuous random variable follows the standard normal distribution. Find

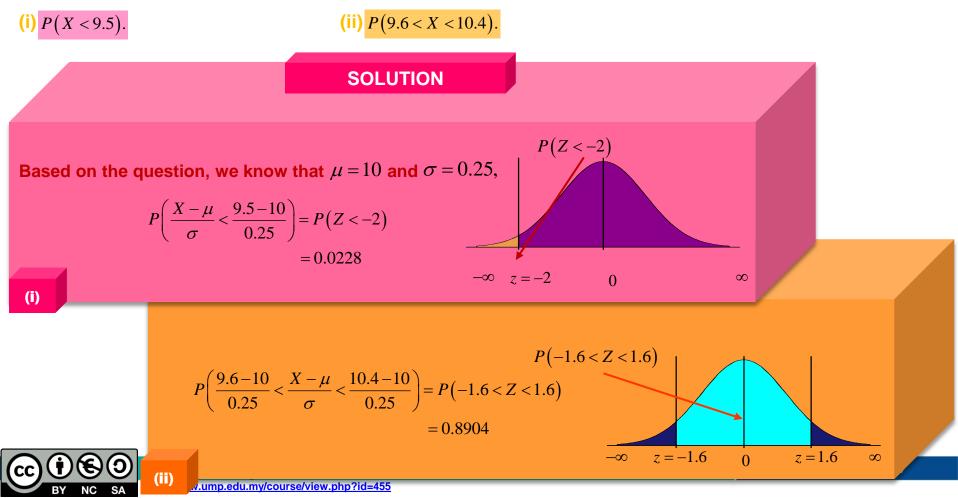


If Z is N(0,1), find values of c such that



EXERCISE 5.5

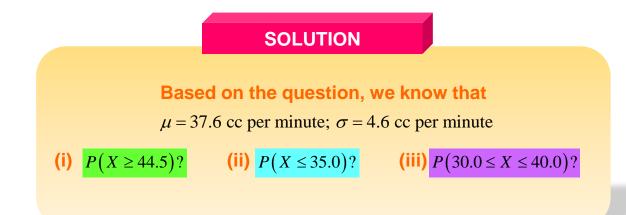
Given that the resistance of an electrical circuit follows the normal distribution with a mean of 10 ohms and standard deviation of 0.25 ohms. Denote that a continuous random variable, X represents the measurement of resistances in the terms of ohms. Find



EXERCISE 5.6

Denotes that the reduction of a person's oxygen consumption during sleep follows a normal distribution with a mean of 37.6 cc per minutes and standard deviation of 4.6 cc per minutes. Find the probability that the person's oxygen consumption during sleep will be reduced by

- (i) at least 44.5 cc per minutes.
- (ii) At most 35.0 cc per minutes.
- (iii) anywhere from 30.0 to 40.0 cc per minutes.



Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455 By using the function in calculator,

$$P\left(\left(\frac{X-\mu}{\sigma}\right) \ge \left(\frac{44.5-37.6}{4.6}\right)\right) = P\left(Z \ge 1.5\right)$$
$$= 0.0668$$

(i)

 $P(Z \ge 1.5)$ 1.5 0 ∞ $-\infty$

By using the function in calculator,

$$P\left(\left(\frac{X-\mu}{\sigma}\right) \le \left(\frac{35.0-37.6}{4.6}\right)\right) = P\left(Z \le -0.5652\right)$$

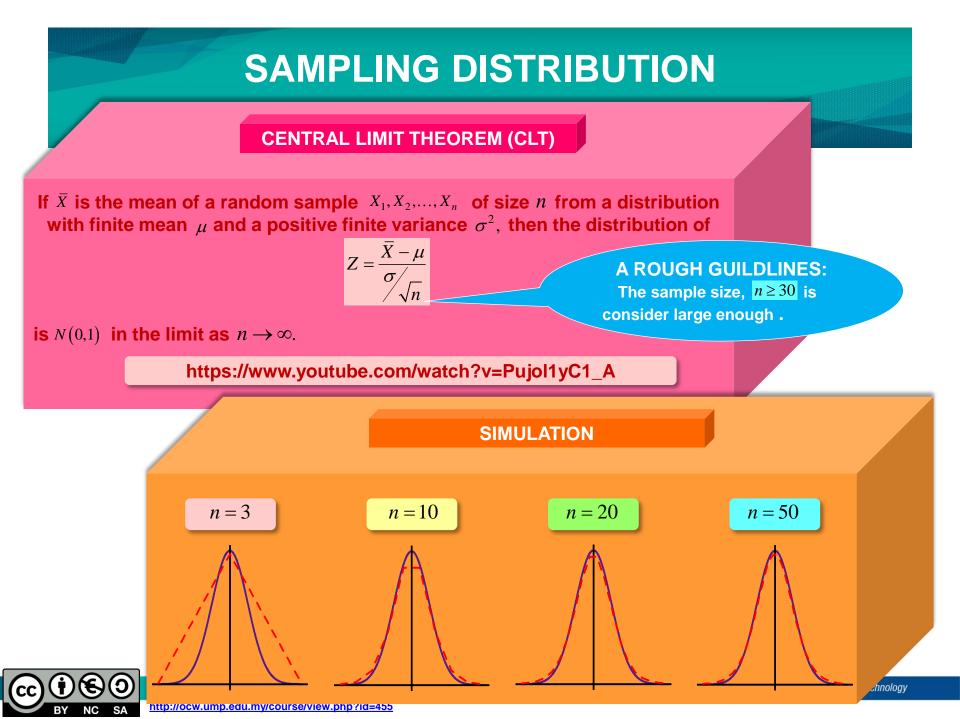
= 0.2860

 $P(Z \le -0.5652)$ -∞ -0.5652 0 ∞

(ii) $P(-1.6522 \le Z \le 0.5217)$ By using the function in calculator, $P\left(\left(\frac{30.0-37.6}{4.6}\right) \le \left(\frac{X-\mu}{\sigma}\right) \le \left(\frac{40.0-37.6}{4.6}\right)\right) = P\left(-1.6522 \le Z \le 0.5217\right)$ $-\infty$ -1.6522 0 0.5217 = 0.6498 ∞ (iii)

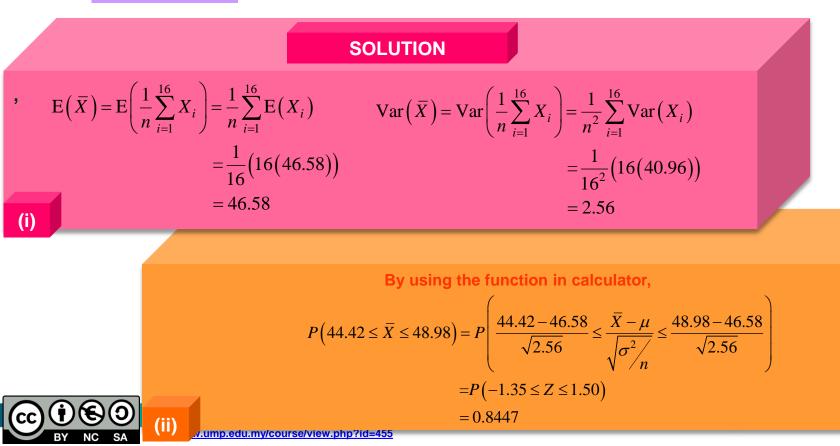
5.4 THE CENTRAL LIMIT THEOREM

Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455



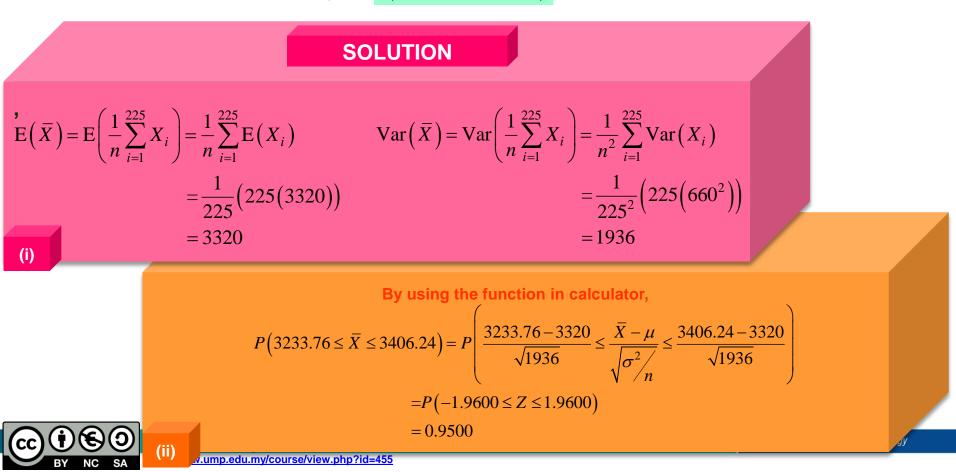
Given that a continuous random variable, X represents the measurement of the diameter of the fetal head between 16th and 25th weeks of pregnancy is normally distributed with a mean 46.58mm and standard deviation of 40.96mm. Suppose that \overline{X} represents the sample mean of the random sample of size 16 for X.

- (i) Determine the values of $E(\bar{X})$ and $Var(\bar{X})$.
- (ii) Find $P(44.42 \le \overline{X} \le 48.98)$.



EXCERCISE 5.7

Suppose that the weight of the-born baby born in a community is adequately modeled by the normal distribution with E(X) = 3320g and $Var(X) = 660^2$. Given that \overline{X} the sample mean of a random sample of size 225. Based on the information, find $P(3233.76 \le \overline{X} \le 3406.24)$,



EXERCISE 5.8

Given that a continuous random variable, represents the force required to push a crate across a factory, where $X \sim N(147.8, 12.3^2)$.

- (i) Find P(X < 163.3).
- (ii) If \overline{X} is the mean and S^2 is the variance of a 25 random sample from the distribution of X, find $P(\overline{X} \le 150.9)$.

By using the function in calculator,

(ii)

$$P\left(\left(\frac{X-\mu}{\sigma}\right) < \left(\frac{163.3-147.8}{12.3}\right)\right) = P\left(Z < 1.2602\right)$$

= 0.8962

(i)

(cc)

BY

NC

SA

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{25}X_i\right) = \frac{1}{n}\sum_{i=1}^{25}E(X_i) \qquad Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{25}X_i\right) = \frac{1}{n^2}\sum_{i=1}^{25}Var(X_i) = \frac{1}{25}(25(147.8)) \qquad = \frac{1}{25^2}(25(12.3^2)) = 147.8 \qquad = 6.0516$$

(ii)

By using the function in calculator,

$$P\left(\left(\frac{\overline{X}-\mu}{\sqrt{\sigma^2/n}}\right) \le \left(\frac{150.9-147.8}{\sqrt{6.0516}}\right)\right) = P\left(Z \le 1.2602\right)$$

= 0.8962

mp.edu.my/course/view.php?id=455

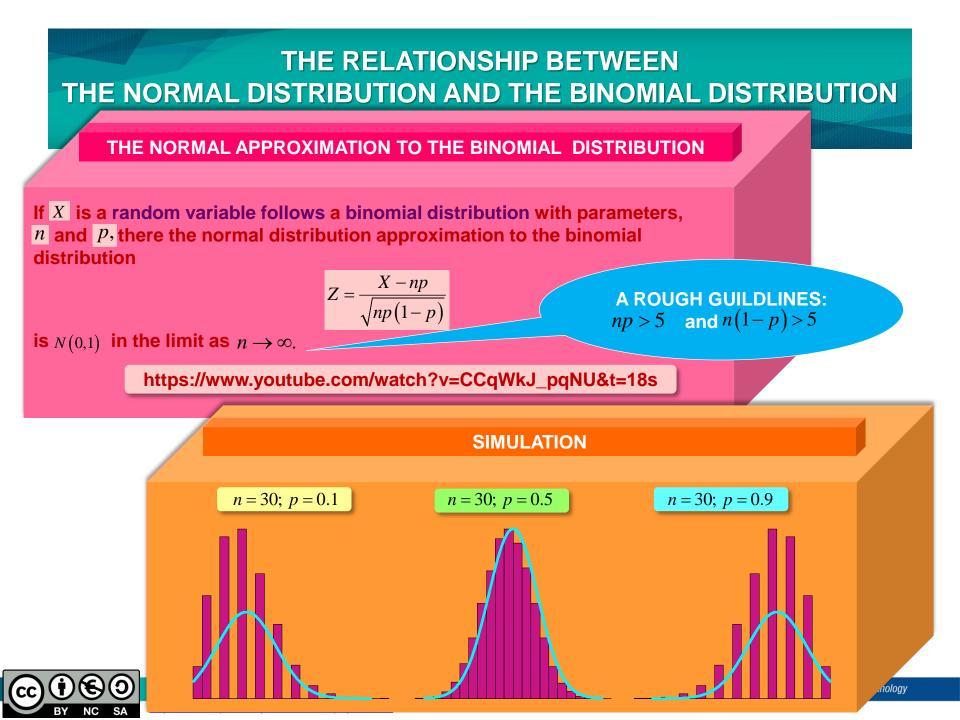
 $=\frac{1}{25^2}(25(12.3^2))$

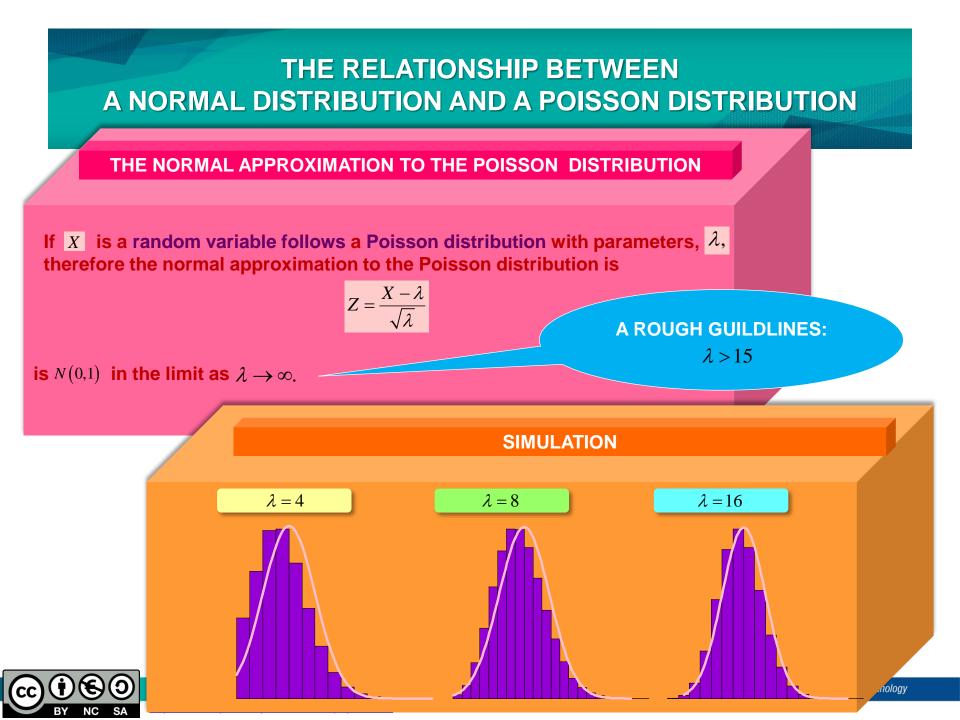
= 6.0516

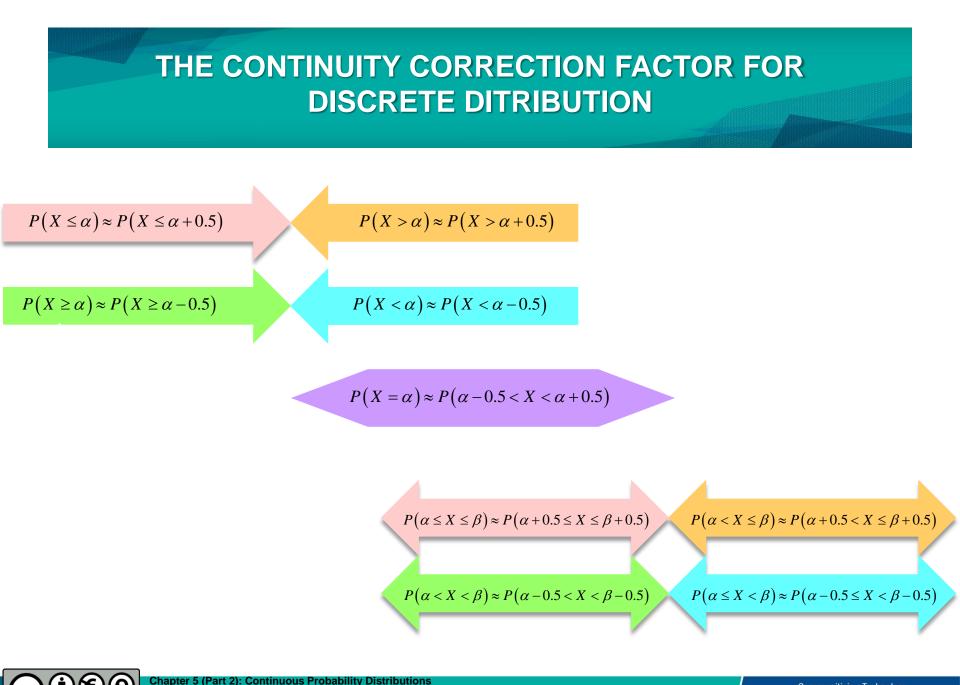
5.5 NORMAL APPROXIMATION TO BINOMIAL DISTRIBUTION

5.6 NORMAL APPROXIMATION TO POISSON DISTRIBUTION

Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.mv/course/view.php?id=455



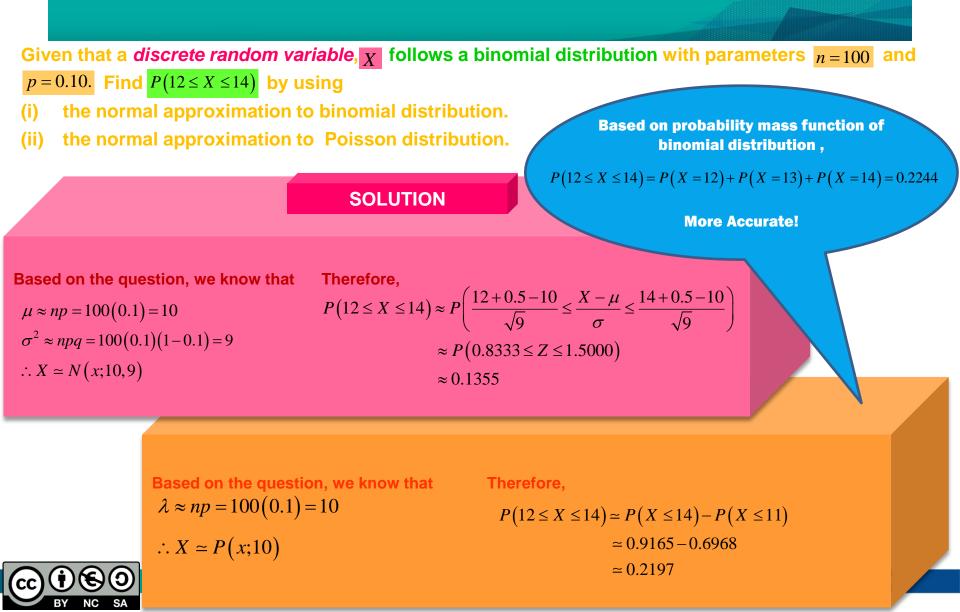




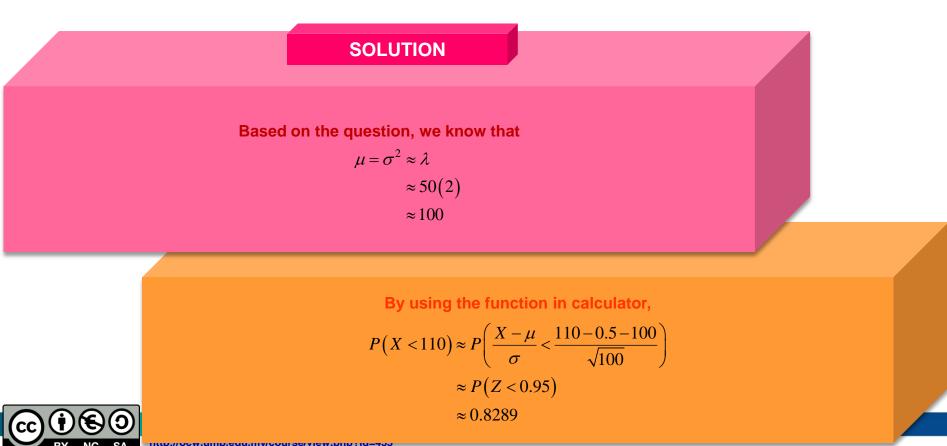
BY NC SA

Communitising Technology

http://ocw.ump.edu.my/course/view.php?id=455

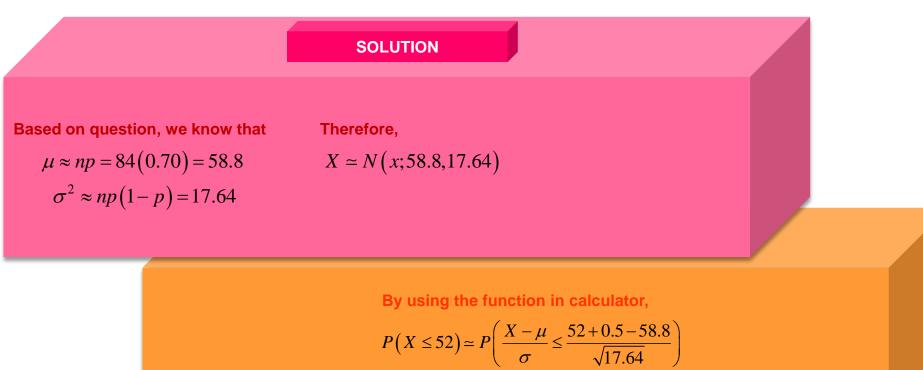


A manufacturer of fabric found that *the number of flaws of fabric in a production line* is *adequately modeled by a Poisson distribution* with *average of two*. For further quality improvement, the manufacturer has randomly selects 50 of fabric from the production line. By using a normal distribution approximation to Poisson distribution, determine the probability that the total number of flaws in these 50 fabric is less than 110?



EXERCISE 5.9

In a community, it found 70% kids infected with food poisoning due to pathogens in unhygienic food. Denotes that a continuous random variable, X, which are normally distributed and given that in 84 random samples of kids who infected by food poisoning. By using a normal distribution approximation to binomial distribution, find $P(X \le 52)$.



$$\simeq P(Z \le -1.5000)$$

 $\simeq 0.0668$

THANK YOU END OF CHAPTER 5 (PART 2)

Chapter 5 (Part 2): Continuous Probability Distributions By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455