PAHANG

## DUM 2413 STATISTICS \& PROBABILITY

## CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

## PREPARED BY:

DR. CHUAN ZUN LIANG; DR. NORATIKAH ABU; DR. SITI ZANARIAH SATARI FACULTY OF INDUSTRIAL SCIENCES \& TECHNOLOGY chuanzl@ump.edu.my; atikahabu@ump.edu.my; zanariah@ump.edu.my

## EXPECTED OUTCOMES

- Able to determine the expected value, standard deviation and variance of a discrete random variable
- Able to distinguish between the binomial and Poisson distributions
- Able to solve the application problems, which involved the binomial and Poisson distributions
- Able to identify the relationship between the binomial and Poisson distributions


## CONTENT

> 4.1
> DISCRETE RANDOM VARIABLE AND PROBABILITY DISTRIBUTION

## 4.2 <br> MEAN AND VARIANCE OF A DISCRETE RANDOM VARIABLE

## 4.3 <br> BINOMIAL DISTRIBUTION

## 4.4 <br> POISSON DISTRIBUTION

## 4.3 <br> BINOMIAL DISTRIBUTION

## 4.4 <br> POISSON DISTRIBUTION

## DISCRETE PROBABILITY DISTRIBUTIONS



## BINOMIAL DISTRIBUTION

## PROBABILITY DISTRIBUTIONS

A discrete random variable, $X$ is said to follow binomial probability distribution with parameters $n$ and $p$, denoted bybin $(x ; n, p)$ if

$$
f(x)=P(X=x)=\binom{n}{x}(p)^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots, n
$$

where $p$ is probability of success and $q=1-p$ is probability of failure on a single trial.

## MEAN AND VARIANCE

If $X$ is binomial random variable with parameters $n$ and $p$, then

$$
\begin{gathered}
\text { Mean, } \mathrm{E}(X)=\mu=n p \\
\text { Variance, } \operatorname{Var}(X)=\sigma^{2}=n p(1-p)
\end{gathered}
$$

## EXAMPLE 4.8

The previous records of an insurance company show that there are $20 \%$ of residents in a community do not have health insurance. Suppose that a random variable, $X$ represents the number of residents do not have health insurance in a random sample 15 residents.
(i) How is $X$ distributed?
(ii) Determine the mean, variance and standard deviation of $X$.
(iii) Find $P(X \geq 5)$.

## SOLUTION

## Since

$$
\begin{aligned}
& n=15 \\
& p=\frac{20}{100}=0.20
\end{aligned}
$$

Therefore, the distribution of $X$

$$
\begin{aligned}
& X \sim \operatorname{bin}(x ; n, p) \\
& X \sim \operatorname{bin}(x ; 15,0.20)
\end{aligned}
$$

Mean :

$$
\begin{aligned}
\mu=\mathrm{E}(X) & =n p \\
& =15(0.20) \\
& =3.00
\end{aligned}
$$

Variance:

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(X) & =n p(1-p) \\
& =15(0.20)(1-0.20) \\
& =2.40
\end{aligned}
$$

Standard Deviation:

$$
\begin{aligned}
\sigma= & \sqrt{n p(1-p)} \\
& =\sqrt{15(0.20)(0.80)} \\
& =1.5492
\end{aligned}
$$

$$
\begin{aligned}
P(X \geq 5) & =1-P(X \leq 4) \\
& =1-\sum_{x=0}^{4}\binom{15}{x}(0.2)^{x}(1-0.2)^{(15-x)} \\
& =1-(0.0352+0.1319+0.2309+0.2501+0.1876) \\
& =0.1643
\end{aligned}
$$

## EXERCISE 4.6

In a research conducted about the satisfaction of among students to their lecturers' teaching skills. Based on analysis results, it was found that the proportion of all students who satisfied with the lecturers' teaching skills is $p=0.10$. Given that a random variable, $X$ represents the number of students out of a random sample of size nine who do not satisfy the lecturers' teaching skills.
(i) How is $X$ distributed?
(ii) Determine the values of the mean, variance and standard deviation of $X$.
(iii) Find $P(X=2)$ and $P(X \geq 2)$.

## SOLUTION

$$
\begin{array}{ll}
\text { Since } & \text { Therefore, the } \\
n=9 & X \sim \operatorname{bin}(x ; n, p) \\
p=0.10 & X \sim \operatorname{bin}(x ; 9,0.10)
\end{array}
$$

Therefore, the distribution of $\boldsymbol{X}$

Mean:

$$
\begin{aligned}
\mu=\mathrm{E}(X) & =n p \\
& =9(0.10) \\
& =0.9000
\end{aligned}
$$

Variance:
$\sigma^{2}=\operatorname{Var}(X)=n p(1-p)$

$$
\begin{aligned}
& =9(0.10)(1-0.10) \\
& =0.8100
\end{aligned}
$$

Standard Deviation:
$\sigma=\sqrt{n p(1-p)}$
$=\sqrt{9(0.10)(0.90)}$
$=0.9000$

$$
\left.\begin{array}{rl}
P(X=x) & =\binom{n}{x}(p)^{x}(1-p)^{(n-x)} \quad P(X \geq 2)
\end{array}\right)=1-P(X \leq 1), ~=1-\sum_{x=0}^{1}\binom{9}{x}(0.10)^{x}(1-0.10)^{(9-x)}
$$

## EXERCISE 4.7

During a manufacturing process in particular production line, the probability to produce a defective computer chip is 0.05 . For continuous quality improving, a quality engineer randomly selects six computer chip for the production line. Suppose that a random variable, $X$ represents the number of defective computer chips in the sample..
(i) How $X$ is distributed?
(ii) Determine the values of $E(X)$ and $\operatorname{Var}(X)$.
(iii) Find $P(X=0)$, and $P(X \geq 2)$, respectively.

## SOLUTION

Since
$n=6$
$p=0.05$

Therefore, the distribution of $X$

$$
\begin{aligned}
& X \sim \operatorname{bin}(x ; n, p) \\
& X \sim \operatorname{bin}(x ; 6,0.05)
\end{aligned}
$$

Mean :

$$
\begin{aligned}
\mu=\mathrm{E}(X) & =n p \\
& =6(0.05) \\
& =0.3000
\end{aligned}
$$

Variance:

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(X) & =n p(1-p) \\
& =6(0.05)(1-0.05) \\
& =0.2850
\end{aligned}
$$

$$
\begin{aligned}
P(X=x) & =\binom{n}{x}(p)^{x}(1-p)^{n-x} \\
P(X=0) & =\binom{6}{0}(0.05)^{0}(1-0.05)^{6} \\
& =0.7351
\end{aligned}
$$

$$
P(X \geq 2)=1-P(X \leq 1)=1-\sum_{x=0}^{1}\binom{6}{x}(0.05)^{x}(1-0.05)^{(6-x)}
$$

$$
=0.0328
$$

## EXERCISE 4.8

A random variable, $X$ has a binomial distribution with mean 6 and variance 3.6 $P(X=4)$.

## SOLUTION

$$
\begin{aligned}
& \mu=n p=6 \\
& \sigma^{2}=n p q=3.6
\end{aligned} \quad \frac{\sigma^{2}}{\mu}=\frac{n p q}{n p} \Rightarrow q=\frac{3.6}{6}=0.6000 \quad \begin{aligned}
p & =1-q \\
& =0.4000
\end{aligned}
$$

$$
\mu=n p \Rightarrow n=\frac{6}{0.4000}=15
$$

$$
\begin{aligned}
P(X=4) & =\binom{15}{4}(0.4000)^{4}(1-0.4000)^{(15-4)} \\
& =0.1268
\end{aligned}
$$

## EXERCISE 4.9

The standard average weight of a grade A egg is 67.5 grams. Given that the probability of the egg weight less than 67.5 grams is 0.90 . and let a random variable, $X$ represents the number of eggs, which the weights less than 67.5 grams in a random sample of 8 eggs. Find
(i) $P(X=8)$.
(ii) $P(X \leq 6)$.
(iii) $P(X \geq 6)$.

## SOLUTION

Based on the question, we know that

$$
n=8 ; p=0.90 \Rightarrow X \sim \operatorname{bin}(x ; 8,0.90)
$$

## POISSON DISTRIBUTION

## PROBABILITY DISTRIBUTIONS

A discrete random variable, $X$ is said to follow Poisson probability distribution with parameters, $\lambda>0$, denoted $\operatorname{byPo}(x ; \lambda)$ if

$$
f(x)=P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2, \ldots
$$

## MEAN AND VARIANCE

If $X$ is a Poisson random variable with parameters $\lambda$, then

$$
\begin{gathered}
\text { Mean, } \mathrm{E}(X)=\mu=\lambda \\
\text { Variance, } \operatorname{Var}(X)=\sigma^{2}=\lambda
\end{gathered}
$$

## EXAMPLE 4.9

Denotes that a random variable, $X$ is Poisson distributed with a mean of 4 . Find
(i) $\quad P(2 \leq X \leq 5)$
(ii) $\quad P(X \geq 3)$
(iii) $\quad P(X \leq 3)$

## SOLUTION

$$
\begin{aligned}
P(2 \leq X \leq 5) & =\sum_{x=2}^{5} \frac{e^{-4}(4)^{x}}{X!}=0.1465+0.1954+0.1954+0.1563 \\
& =0.6936
\end{aligned}
$$

$$
\begin{aligned}
P(X \geq 3) & =1-P(X \leq 2)=1-\sum_{x=0}^{2} \frac{e^{-4} 4^{x}}{x!} \\
& =0.7619
\end{aligned}
$$



$$
P(X \leq 3)=\sum_{x=0}^{3} \frac{e^{-4} 4^{x}}{x!}=0.4335
$$

## EXAMPLE 4.10

The mean rate of a customer arrive at a bank is 11 per hour. Support that that the number of arrivals per hour follows a Poisson distribution. Based on the given information, find the probability that more than 10 customers arrive in a given hour.

## SOLUTION

Based on the question, we know that $\lambda=11$,

$$
\begin{aligned}
P(X>10) & =1-P(X \leq 10)=1-\sum_{x=0}^{10} \frac{e^{-11} 11^{x}}{x!} \\
& =0.5401
\end{aligned}
$$

## EXAMPLE 4.11

In a manufacturing process, the defective rate of sheet metal isfive defects per 10 square feet, which follows a Poisson distribution. What is the probability that a 15 -square-foot sheet of the metal will have at least six defects?

## SOLUTION

Based on the question, we know that

$$
\lambda=\left(\frac{15}{10}\right)(5)=7.5
$$

$$
\begin{aligned}
P(X \geq 6) & =1-P(X \leq 5)=1-\sum_{x=0}^{5} \frac{e^{-7.5} 7.5^{x}}{x!} \\
& =0.7585
\end{aligned}
$$

## EXERCISE 4.10

The average number of kangaroo ships arriving on any one day at a jetty is known to be 12. Find the probability that on a given day fewer than nine trucks will arrive at these jetty?

## SOLUTION

Based on the question, we know that

$$
\lambda=12
$$

$$
\begin{aligned}
P(X<9) & =P(X \leq 8)=\sum_{x=0}^{8} \frac{e^{-12} 12^{x}}{x!} \\
& =0.1550
\end{aligned}
$$

## EXERCISE 4.11

In a community, the number of persons infected by stomach cancer for each year follows a Poisson distribution with average 5.2. Find the probabilities of
(i) three stomach cancer infection in a given year.
(ii) at least 10 stomach infection in a given year.
(iii) anywhere from four to six stomach infection in a given year.

Based on the question, we know that $\lambda=5.2$,

$$
P(X=3)=\frac{\left(e^{-\lambda}\right)\left(\lambda^{x}\right)}{x!}=\frac{\left(e^{-5.2}\right)\left(5.2^{3}\right)}{3!}=0.1293
$$

$$
\begin{aligned}
P(X \geq 10) & =1-P(X \leq 9)=1-\sum_{x=0}^{9} \frac{e^{-5.2} 5.2^{x}}{x!} \\
& =0.0396
\end{aligned}
$$

$$
P(4 \leq X \leq 6)=\sum_{x=4}^{6} \frac{e^{-5.2} 5.2^{x}}{x!}=0.4944
$$

## EXERCISE 4.12

A2 feet wide flat aluminum screen has an average one flaw in a 100-foot roll. Find the probability that 50-foot roll has no flaws.

## BEWARE

## SOLUTION

Based on the question, we know that

$$
\lambda=\left(\frac{50}{100}\right)(1)=0.5
$$

Therefore,

$$
P(X=0)=\frac{\left(e^{-\lambda}\right)\left(\lambda^{x}\right)}{x!}=\frac{\left(e^{-0.5}\right)\left(0.5^{0}\right)}{0!}=0.6065
$$

## THE RELATIONSHIP BETWEEN THE BINOMIAL DISTRIBUTION AND THE POISSON DISTRIBUTION

## THE POISSION DISTRIBUTION APPROXIMATION TO THE BINOMIAL DISTRIBUTION

## THEOREM

If $X$ is a binomial random variable with parameters $n$ and $p$, then for each value $x=0,1,2, \ldots$ and as $p \rightarrow 0, n \rightarrow \infty$ with $n p \approx \lambda$ constant,

$$
\lim _{x \rightarrow \infty}\binom{n}{x}(p)^{x}(1-p)^{n-x} \approx \frac{e^{-(n p)}(n p)^{x}}{x!}
$$

## ROUGH GUIDELINE

In some reference books, a rough guideline is PROVIDED, namely the Poisson distribution approximation to the Binomial distribution should be satisfied the condition
i. $n>50$ and $p<0.1$
ii. $n p<5$

REMEMBER: This is just a rough guideline, therefore some of the reference books might be provided varies values of $n$ and $p$.

## EXAMPLE 4.12

The previous records show that the percentage of residents in a community infected by a rare disease probability is 0.005 percent. By using the Poisson distribution approximation to the binomial distribution, find the probability that among 10,000 residents in the community,
(i) exactly two residents will be infected by the rare disease.
(ii) at most two residents will be infected by the rare disease.

## SOLUTION

Based on the question, we know that

$$
\lambda \approx n p \approx 10000\left(\frac{0.005}{100}\right) \approx 0.5
$$

$$
P(X=2) \approx \frac{\left(e^{-0.5}\right)\left(0.5^{2}\right)}{2!} \approx 0.0758
$$

$$
P(X \leq 2) \approx \sum_{x=0}^{2} \frac{e^{-0.5} 0.5^{x}}{x!} \approx 0.9856
$$

## EXERCISE 4.13

The percentage of all new licensed drivers involved in at one accident is 3 percent for any given year. By using the Poisson approximation to the binomial distribution, find the probability that among 150 new licensed drivers,
(i) only five new licensed drivers involved in at least one accident for any given year.
(ii) at most three new licensed drivers involved in at least one accident for any given year.

## SOLUTION

Based on the question, we know that

$$
\lambda \approx n p \approx 150\left(\frac{3}{100}\right) \approx 4.5
$$

$$
P(X=5)=\frac{\left(e^{-\lambda}\right)\left(\lambda^{x}\right)}{x!}=\frac{\left(e^{-4.5}\right)\left(4.5^{5}\right)}{5!}=0.1708
$$

$$
P(X \leq 3)=\sum_{x=0}^{3} \frac{e^{-4.5} 4.5^{x}}{x!}=0.3423
$$

## THANK YOU END OF CHAPTER 4 (PART 2)

