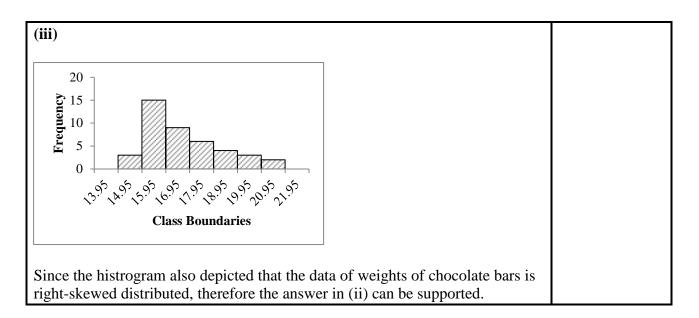
UNIVERSITI MALAYSIA PAHANG

TEST 1 (ANSWER SCHEME)

Course: STATISTICS & PROBABILITY Course Code: DUM2413 Prepared By: Dr. Chuan Zun Liang; Dr. Noratikah Abu; Dr. Siti Zanariah Satari

QUESTION 1				
Answer	Remarks			
(i)				
Population:				
480 customers who purchased the cars for the past 12 months from the outlets.				
Type of population:				
Tangible.				
(ii)				
Variable:				
Level of satisfaction.				
Level of measurement:				
Ordinal-level scale.				
(iii)				
Sampling Method: stratified sampling technique.				



QUESTION 2						
Answer				Remarks		
(i)	(i)					
Class Limits	Class Boundaries	Midpoint	Frequency			
14.0-14.9	13.95-14.95	14.45	3			
15.0-15.9	14.95-15.95	15.45	15			
16.0-16.9	15.95-16.95	16.45	9			
17.0-17.9	16.95-17.95	17.45	6			
18.0-18.9	17.95-18.95	18.45	4			
19.0-19.9	18.95-19.95	19.45	3			
20.0-20.9	19.95-20.95	20.45	2			
$= 16.2$ Mode = L_{mode} $= 14.95$ $= 15.616$ Since (Mode	$+\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)*C$ $+\left(\frac{12}{12+6}\right)*1$ 67 $=15.6167) < (Med$	lian = 16.28	, ,	,	refore	
the data of we	ights of chocolate	bars is right	s-skewed distri	buted.		

2

Statistics & Probability By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

		QUESTION 3						
	Remarks							
i)								
0								
$\frac{Saw}{\overline{x}}$	X 8.0489	<i>Y</i> 8.0700						
x S	0.0372	0.0224						
compares to Saw Y.	χ , , , , , , , , , , , , , , , , , , ,	he data of Saw X is more varia						
compares to Saw <i>Y</i> .	, - , , , , , , , , , , , , , , , , , ,							
-	Saw X	Saw Y]					
ii)								
ii) Information	Saw X	Saw Y						
ii) Information Minimum (Min)	Saw X 8.00	Saw <i>Y</i> 8.04						
ii) Information Minimum (Min) First Quartile (Q ₁)	Saw X 8.00 8.02	Saw <i>Y</i> 8.04 8.06						
ii) Information Minimum (Min) First Quartile (Q_1) Median (Q_2)	Saw X 8.00 8.02 8.04	Saw <i>Y</i> 8.04 8.06 8.07						

Statistics & Probability By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

Saw X	Saw Y
$Q_1 = x_{\underline{1(9)}} = x_{2.25} = x_3 = 8.02$	$Q_1 = x_{\underline{1(9)}} = x_{2.25} = x_3 = 8.06$
$\frac{4}{Q_2 = x_{\frac{2(9)}{4}} = x_{4.5} = x_5 = 8.04}$	$Q_2 = x_{\underline{2(9)}} = x_{4.5} = x_5 = 8.07$
$Q_3 = x_{\underline{3(9)}} = x_{6.75} = x_7 = 8.07$	$Q_3 = x_{\underline{3(9)}} = x_{6.75} = x_7 = 8.08$
Outlier: Lower Limit (LL)	Lower Limit (LL)
$x < Q_1 - 1.5(Q_3 - Q_1)$	$x < Q_1 - 1.5(Q_3 - Q_1)$
x < 8.02 - 1.5(8.07 - 8.02)	x < 8.06 - 1.5(8.08 - 8.06)
x < 7.9450 Upper Limit	<i>x</i> < 8.0300 Upper Limit
$x > Q_3 + 1.5(Q_3 - Q_1)$	$x > Q_3 + 1.5(Q_3 - Q_1)$
x > 8.07 + 1.5(8.07 - 8.02)	x > 8.08 + 1.5(8.08 - 8.06)
x > 8.1450	x > 8.1100
(iii)	
Saw Y	
Saw X	
7.95 8.00 8.05 8.10	8.15
Shape of distribution: Saw X: Right-skewed distribution; Sav Variation: Since $(IQR_X = 0.05) > (IQR_Y = 0.02)$,	
variable compares to Saw <i>Y</i> .	

4

Statistics & Probability By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

QUESTION 4					
Answer	Remarks				
(i) $s = 6.1803 \mathrm{km}$					
S = 0.1805 Kill					
(ii)					
1.9393 = 14.3000 - 6.1803k					
6.1803k = 12.3607 k = 2					
$1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 0.75$					
At least 75% of one-way distance home to college is between 1.9393 and					
26.6607 km.					

