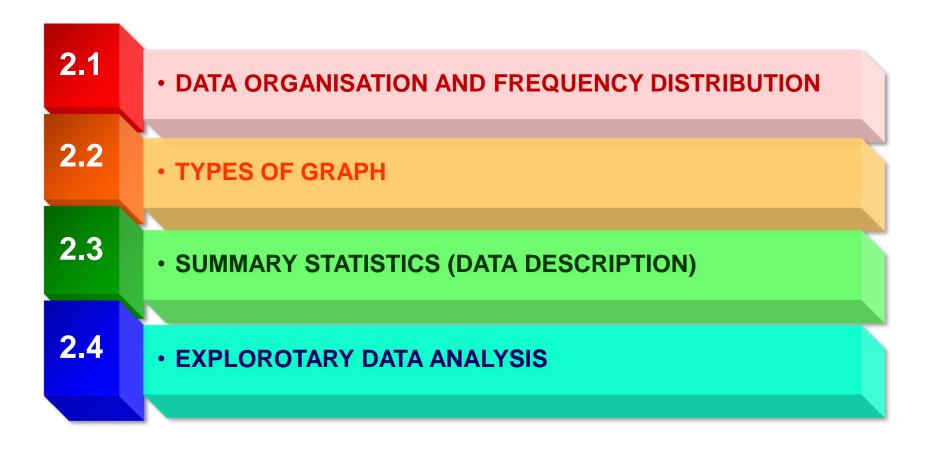


DUM 2413 STATISTICS & PROBABILITY


CHAPTER 2 DESCRIPTIVE STATISTICS

PREPARED BY:

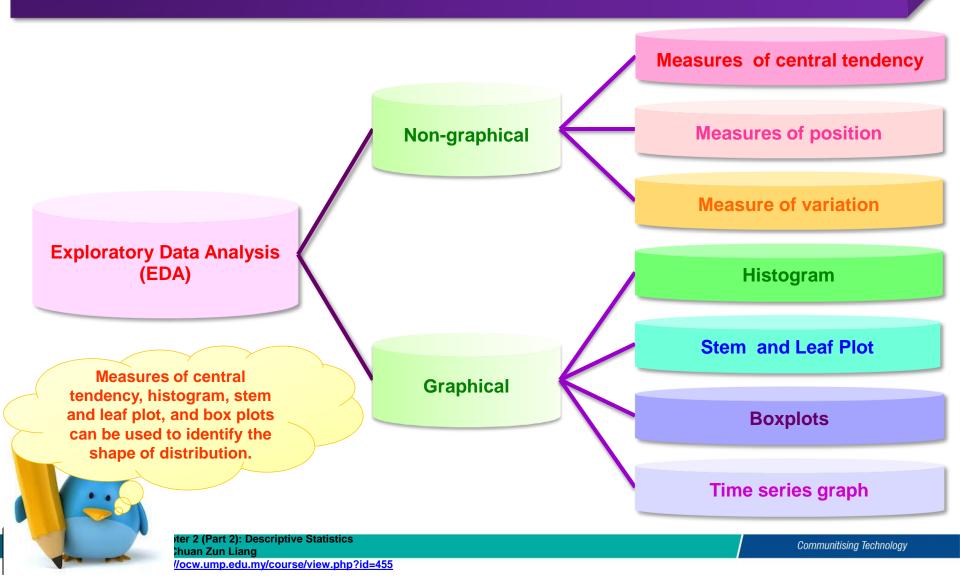
DR. CHUAN ZUN LIANG; DR. NORATIKAH ABU; DR. SITI ZANARIAH SATARI FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY chuanzl@ump.edu.my; atikahabu@ump.edu.my; zanariah@ump.edu.my

CONTENT

EXPECTED OUTCOMES

- Able to organise and represent qualitative and quantitative data using an appropriate analysis tool
- Able to differentiate between the grouped and ungrouped data
- Able to summarise the data using non-graphical and graphical exploratory data analysis tools
- Able to apply Chebyshev's Theorem in applications

2.3 SUMMARY STATISTICS (DATA DESCRIPTION)


2.4 EXPLORATORY DATA ANALYSIS

Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

Communitising Technology

Exploratory Data Analysis (EDA) is an approach using statistical tools to analyse the data sets in order to summarise or describe their important characteristics.

MEASURES OF CENTRAL TENDENCY (UNGROUPED DATA)

MEASURES OF CENTRAL TENDENCY

Population:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$N = \text{Population size}$$

Sample:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
$$n = \text{Sample size}$$

ze

MEDIAN

If *n* is odd: Median = $x_{\left(\frac{n}{2}\right)}$

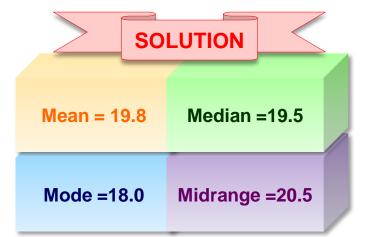
If *n* is even:

Median =
$$\frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}\right)}}{2}$$

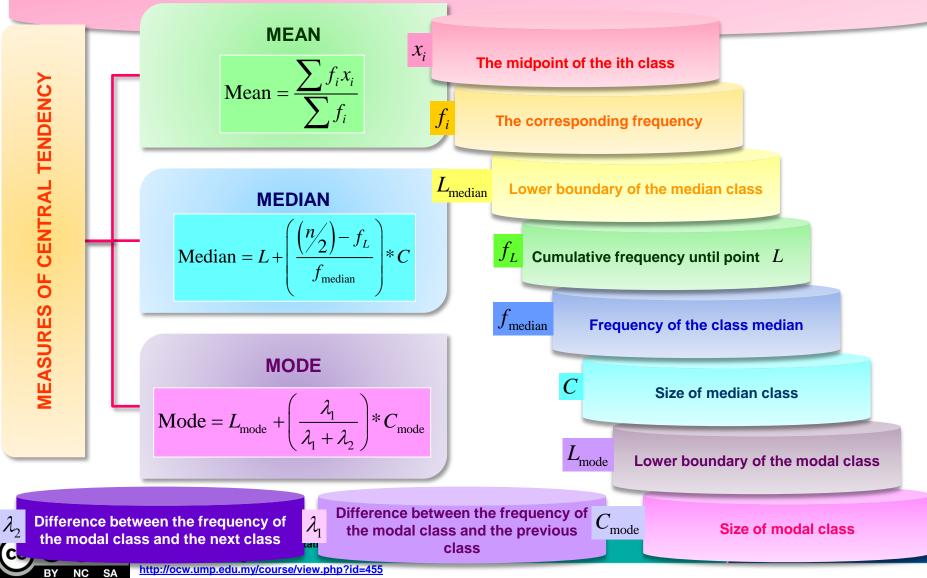
MODE

The mode is the value which has the highest frequency in a data set.

MIDRANGE


Midrange = $\frac{x_{\min} + x_{\max}}{2}$ where x_{\min} = lowest value (minimum) x_{\max} = highest value (maximum)

A sample of 10 students in UMP showed the following credit hours taken during the first year of this program.


17 18 18 18 19 20 21 21 22 24

Compute the mean, median, mode, and midrange.

MEASURES OF CENTRAL TENDENCY (GROUPED DATA)

Calculate the mean, mode and median of the following data.

Height (cm)	Frequency	Midpoint	Cumulative Frequency
120 ≤ x < 125	1	122.5	1
125 ≤ x < 130	3	127.5	4
130 ≤ x < 135	6	132.5	10
135 ≤ x < 140	12	137.5	22
140 ≤ x <145	17	142.5	39
145 ≤ x < 150	18	147.5	57
150 ≤ x < 155	15	152.5	72
155 ≤ x <160	5	157.5	77
160 ≤ x < 165	2	162.5	79
165 ≤ x < 170	1	167.5	80

Solution

$$edian = \left(\frac{80}{2}\right) th = 40th$$
Mode:

Class boundary=145-150

Class boundary=145-150

Μ

EXAMPLE 2.8-CONTINUE

$$Mean = \frac{\sum f_i x_i}{\sum f_i} = 144.9375$$

Median =
$$L + \left(\frac{\binom{n}{2} - f_L}{f_m}\right) * C$$

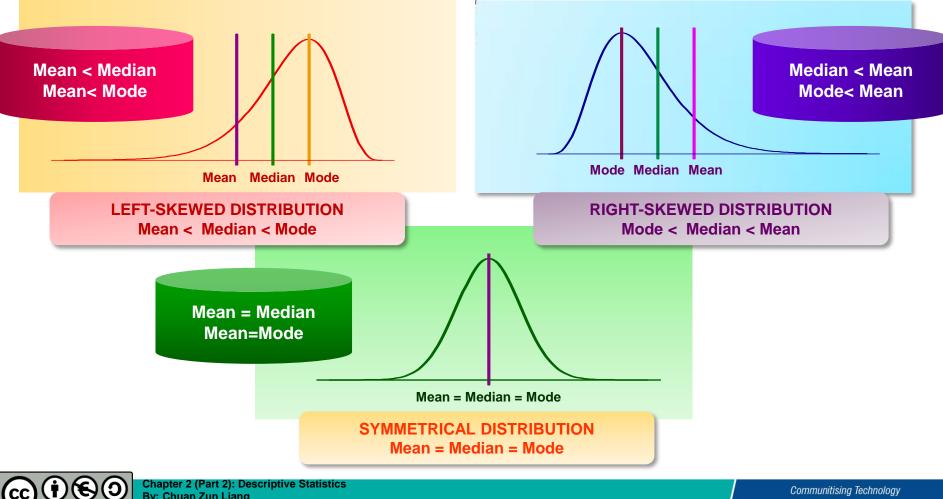
 $L = 145; f_L = 39; f_m = 18; C = 150 - 145 = 5$
 $= 145 + \left(\frac{\binom{80}{2} - 39}{18}\right) * 5$
 $= 145.2778$

Mode =
$$L_{\text{mode}} + \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right) * C$$

 $L_{\text{mode}} = 145; \ \lambda_1 = 18 - 17 = 1; \ \lambda_2 = 18 - 15 = 3$
 $= 145 + \left(\frac{1}{1+3}\right) * 5$
 $-146, 2500$

http://ocw.ump.edu.my/course/view.pnp?ia=455

(cc)


BY

SA

NC

ing rechnology

IDENTIFY THE SHAPE OF DISTRIBUTION USING MEASURES OF CENTRAL TENDENCY

By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

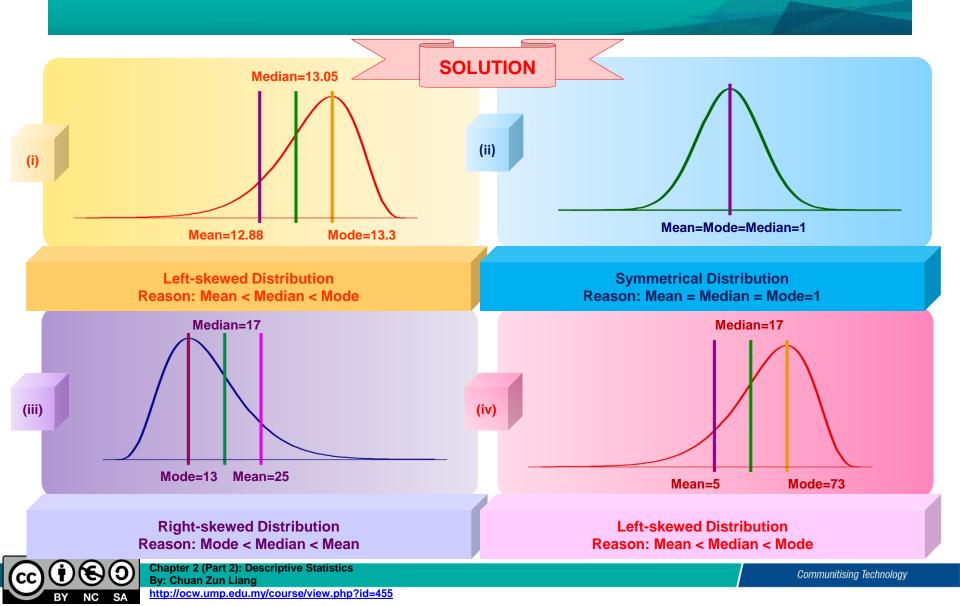
ΒY

NC

SA

Communitising Technology

Determine the type of distribution of the following data


(ii) Mean=Mode=Median=1

(iii) Mean=25, Mode=13, Median=17

(iv) Mean=5, Mode=73, Median=17

EXAMPLE 2.9-CONTINUE

The table shows the speed of the tracks passing through a hilling road.

Speed	Frequency	Class Boundary	Midpoint	Cumulative frequency
56-58	4	55.5-58.5	57	4
59-61	12	58.5-61.5	60	16
62-64	28	61.5-64.5	63	44
65-67	58	64.5-67.5	66	102
68-70	44	67.5-70.5	69	146
71-73	18	70.5-73.5	72	164
74-76	10	73.5-76.5	75	174

Find the mean, mode and median. Hence, identify the shape of distribution based on measures on central tendency.

SOLUTIONMedian =
$$\left(\frac{174}{2}\right)$$
th=87th
Class boundary=64.5-67.5Mode:
Class boundary=64.5-67.5

EXAMPLE 2.10-CONTINUE

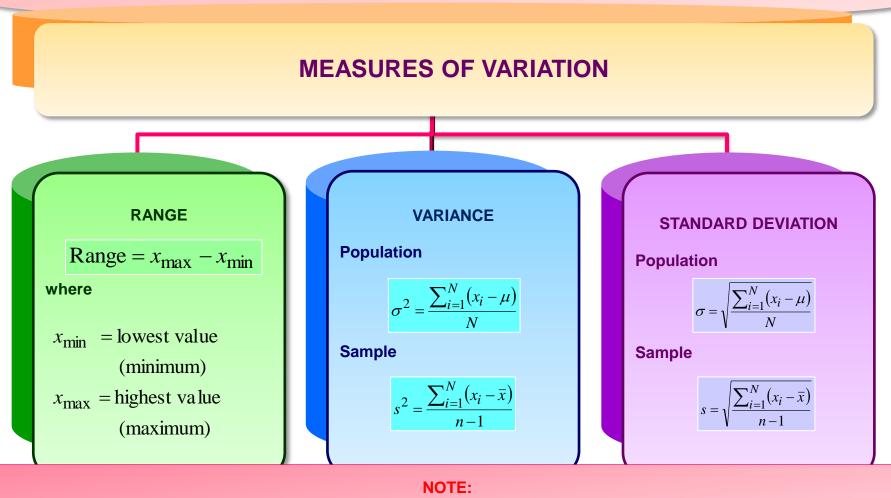
$$Mean = \sum_{f_i} f_i x_i = 66.7931$$

$$Median = L + \left(\frac{n/2}{f_m}\right) * C$$

$$L = 64.5; f_L = 44; f_m = 58; C = 67.5 - 64.5 = 3$$

$$= 64.5 + \left(\frac{174/2}{58}\right) * 3$$

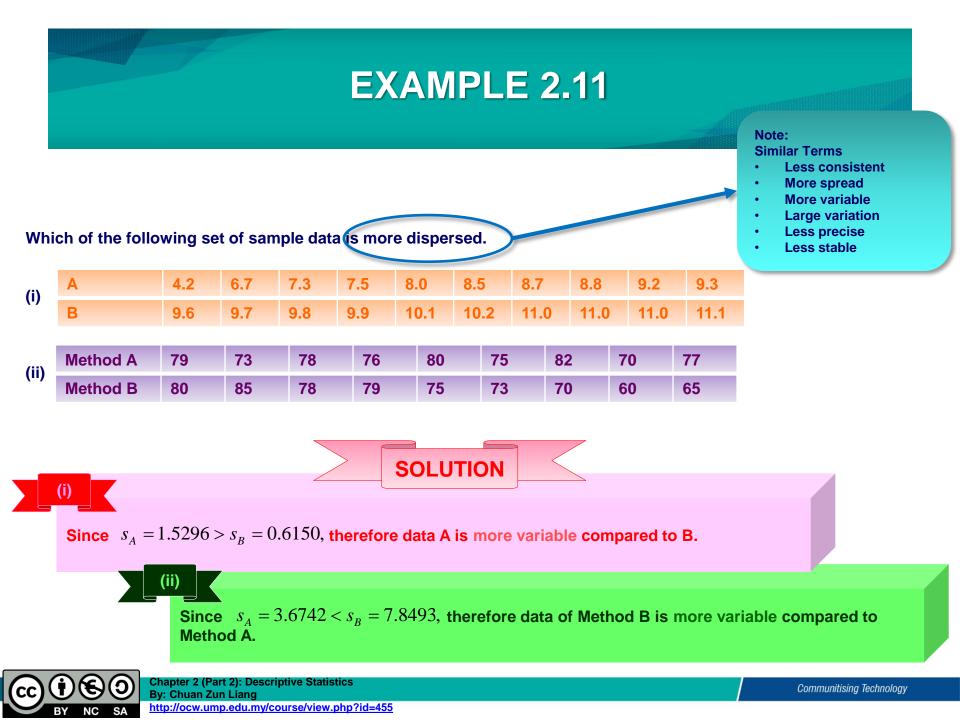
$$= 66.7241$$
Mode < Median < Mean
Right-skewed Distribution
Median = 66.7241
Median = 66.7931


Mode =
$$L_{\text{mode}} + \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right) * C$$

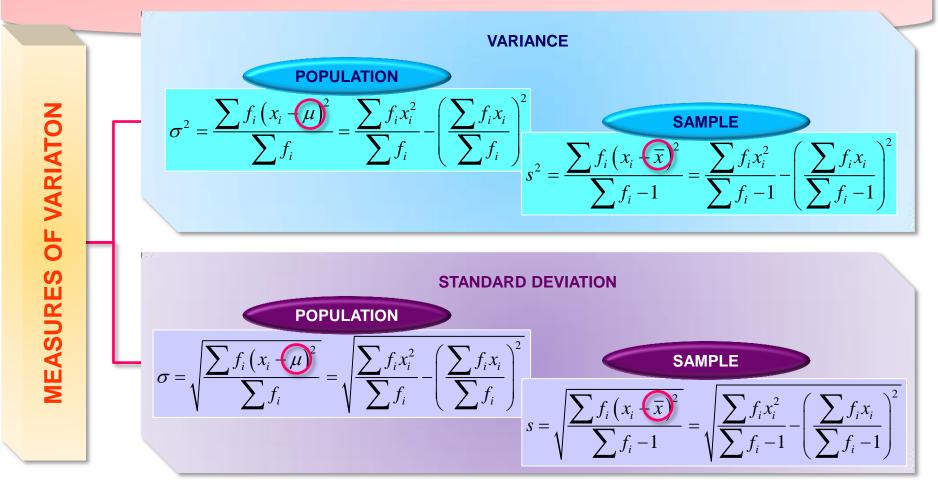
 $L_{\text{mode}} = 64.5; \ \lambda_1 = 58 - 28 = 30; \ \lambda_2 = 58 - 44 = 14$
 $= 64.5 + \left(\frac{30}{30 + 14}\right) * 3$
 $= 66.5455$

BY NC SA

nttp://oc


(cc)

MEASURES OF VARIATION (UNGROUPED DATA)



• Variance, (σ^2/s^2) AND Standard Deviation (σ/s), can be used to determine the spread and consistency of the data. For example, $\sigma_A > \sigma_B / s_A > s_B$, this means sample A is more dispersed/variable compares to sample B.

BY

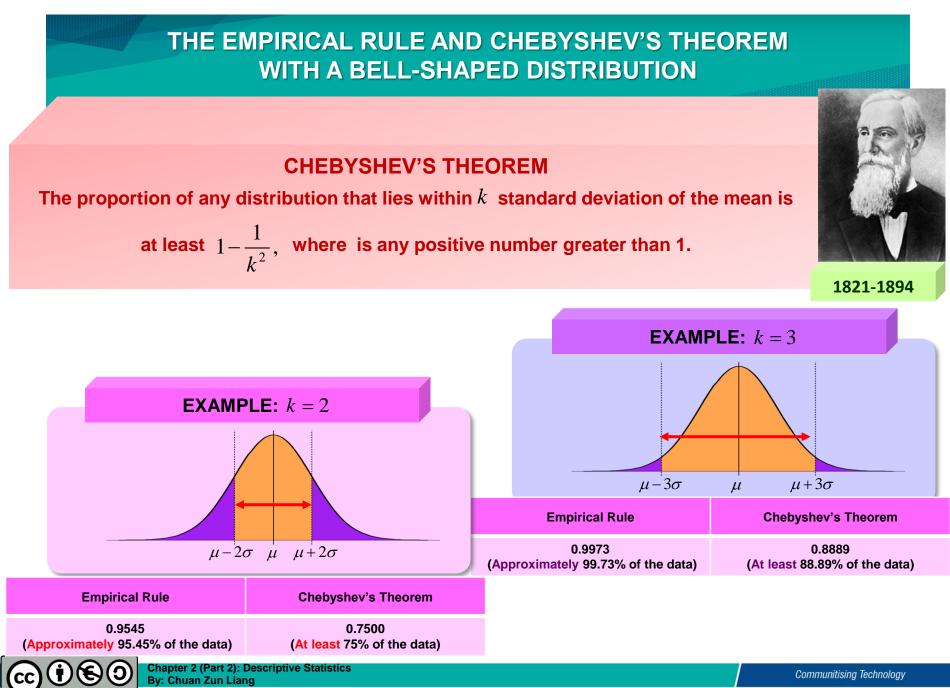
MEASURES OF VARIATION (GROUPED DATA)

 x_i : The midpoint of the ith class; f_i : The corresponding frequency

ΒY

The table below shows the lifetime (hours) of 112 light bulbs. Find the sample mean, standard deviation and variance of the lifetime of these light bulbs.

Lifetime (hours)	Number of bulbs
800 ≤ x < 1000	5
1000 ≤ x < 1200	17
1200 ≤ x < 1400	26
1400 ≤ x < 1600	38
1600 ≤ x < 1800	13
1800 ≤ x < 2000	8
2000 ≤ x < 2200	5

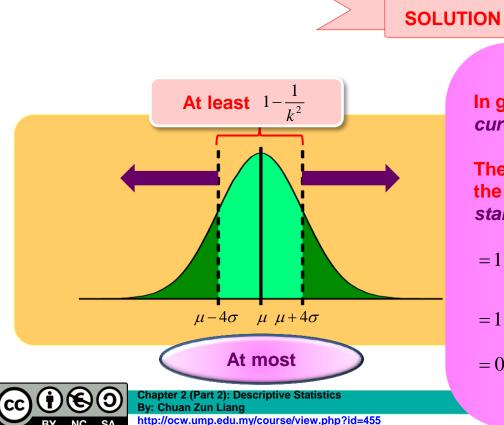

	Lifetime (hours)	Midpoint (x_i)	Number of bulbs (f_i)
SOLUTION	800 ≤ x < 1000	900	5
	1000 ≤ x < 1200	1100	17
$\bar{x} = 1444.6429$	1200 ≤ x < 1400	1300	26
s = 281.8342	1400 ≤ x < 1600	1500	38
$s^2 = 79430.5019$	1600 ≤ x < 1800	1700	13
5 - 77+30.3017	1800 ≤ x < 2000	1900	8
	2000 ≤ x < 2200	2100	5
Chapter 2 (Part 2): Descrip By: Chuan Zun Liang	tive Statistics		Communitising Technology

http://ocw.ump.edu.my/course/view.php?id=455

NC

BY

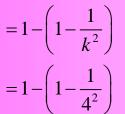
SA



http://ocw.ump.edu.my/course/view.php?id=455

SA

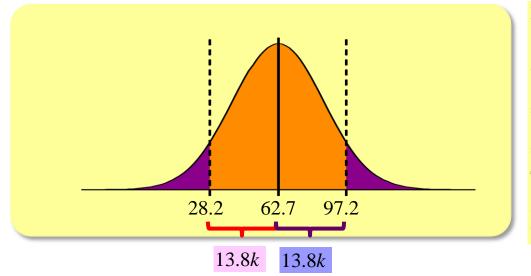
NC


Chebyshev's theorem stated the proportion of any distribution that lies within k standard deviation of the mean. For instance, when k=2, it can interpret as "at least 75% of the data fall within 2 standard deviation of the mean. This also equivalent to state that "at most, 25% will be more than 2 standard deviations away from the mean." At most, what percentage of a distribution will be 4 or more standard deviations from the mean?

In general, we know that the *total area under curve* is equal to *1*.

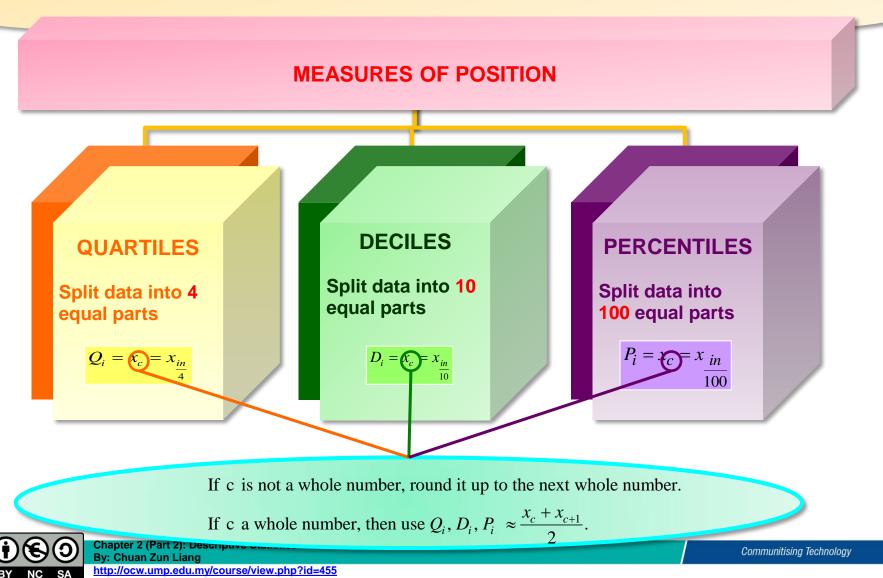
Therefore,

the percentage of a distribution will be 4 or more standard deviation from mean:



At most 6.25% of a distribution will be 4 or more standard deviations from the mean.

A lecturer conducted an analysis regarding the students' performance in the subject of DUM 2413 Statistics & Probability. The analysis results showed that the average marks of this subject is 62.7%, with a standard deviation of 13.8%. According to Chebyshev's theorem, at least what percent of the students' performance in the subject of DUM 2413 Statistics & Probability between 28.2% and 97.2%.



13.8k = 97.2 - 62.7 k = 2.5Chebyshev's Theorem $= 1 - \frac{1}{k^2}$ = 0.84

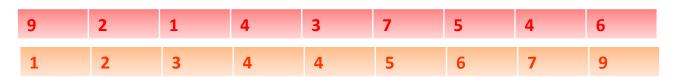
Therefore, at least 84% of student' performance in subject of DUM 2413 Statistics & Probability is between 28.2% and 97.2%.

MEASURES OF POSITION (UNGROUPED DATA)

(CC)

A manufacturing company has 550 operators. A random sample of 11 operators is randomly selected and the numbers of sick leave (in days) last year for these operators are recorded as shown below.

(i) Calculate the first, second and third quartile. (Note: second quartile equivalent to median)


$$Q_1 = x_{\underline{1(11)}} = x_{2.75} \approx x_3 = 2; Q_2 = x_{\underline{2(11)}} = x_{5.5} \approx x_6 = 4; Q_3 = x_{\underline{3(11)}} = x_{8.25} \approx x_9 = 5$$

(ii) Calculate the 25%, 50% and 75% percentile.

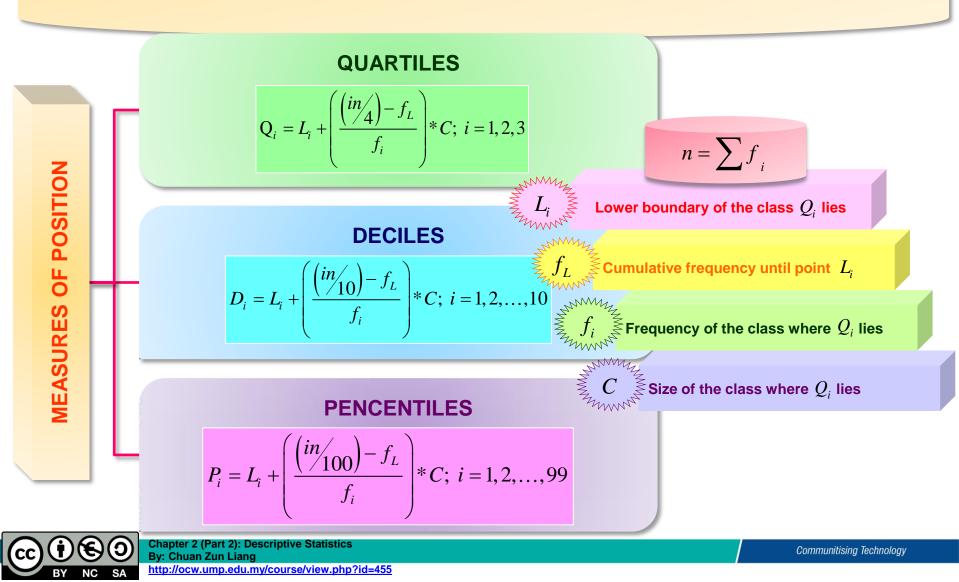
$$P_{25} = x_{\underline{25(11)}} = x_{2.75} \approx x_3 = 2; P_{50} = x_{\underline{50(11)}} = x_{5.5} \approx x_6 = 4; Q_{75} = x_{\underline{75(11)}} = x_{8.25} \approx x_9 = 5$$

1. Given

(i) Find the value correspond to 4th deciles.
(ii) Find the value correspond to 3rd quartiles.

(i)
$$D_4 = x_{4(9)} = x_{3.6} \approx x_4 = 4$$

(ii) $Q_4 = x_{3(9)} = x_{6.75} \approx x_7 = 6$
2. Given


- (i) Find the value correspond to 20th percentiles.
- (ii) Find the value correspond to 7th deciles.

(i)
$$P_{20} = x_{\underline{20(10)}} = x_2 \approx \frac{x_2 + x_3}{2} = 8$$

b)
$$D_7 = x_{\frac{7(10)}{10}} = x_7 \approx \frac{x_7 + x_8}{2} = 15.5$$

MEASURES OF POSITION (GROUPED DATA)

The frequency distribution depicted the times taken for 70 workers to complete a single challenging task assigned by their manager.

Time (min)	Number of workers
20 ≤ x < 25	10
25 ≤ x < 30	8
30 ≤ x < 35	9
35 ≤ x < 40	18
40 ≤ x < 45	21
45 ≤ x < 50	4

Determine Q_1 , D_3 and P_{75} .

CC

	SOLUTION	
Time (min)	Number of workers	Cumulative Frequency
20 ≤ x < 25	10	10
25 ≤ x < 30	8	18
30 ≤ x < 35	9	27
35 ≤ x < 40	18	45
40 ≤ x < 45	21	66
45 ≤ x < 50	4	70
By: Chuan Zun Liang		Communitising le

EXAMPLE 2.17-CONTINUE

$$Q_{i} = L_{i} + \left(\frac{(in/4) - f_{L}}{f_{i}}\right) * C$$

$$L_{i} = 25; n = 70; f_{L} = 10; f_{i} = 8; C = 30 - 25 = 5$$

$$Q_{1} = 25 + \left(\frac{(1*70)/4}{8} - 10\right) * 5$$

$$= 29.6875$$

$$D_{i} = L_{i} + \left(\frac{(in/10) - f_{L}}{f_{i}}\right) * C$$

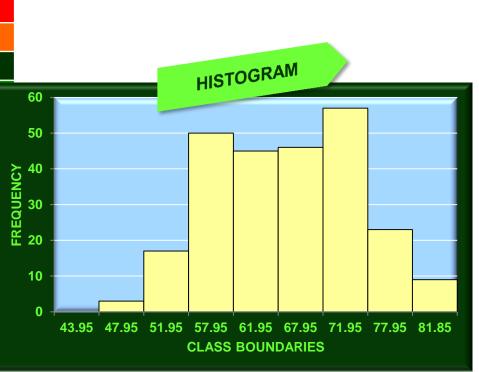
$$L_{i} = 30; n = 70; f_{L} = 18; f_{i} = 9; C = 35 - 30 = 5$$

$$Q_{1} = \left(\frac{1}{4} * 70\right) \text{th} = 17.5 \text{th} \approx 18 \text{th}$$
Class boundary = 25-30
$$D_{3} = 30 + \left(\frac{(3*70)}{9}\right) + 5$$

$$D_{3} = 30 + \left(\frac{(3*70)}{9}\right) + 5$$

$$D_{3} = (\frac{3}{10} * 70) \text{th} = 21 \text{th}$$
Class boundary = 30 - 35
$$= 41.7857$$

$$P_{75} = \left(\frac{75}{100} * 70\right) \text{th} = 52.5 \text{th} \approx 53 \text{th}$$
Class boundary = 40 - 50
$$P_{10} \text{ transmitted in the set of th$$

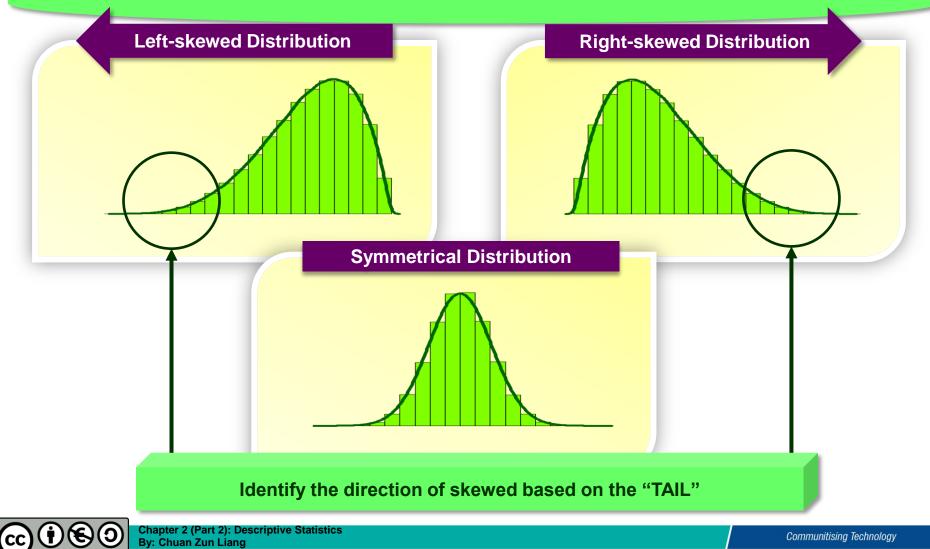

NC SA

BY

HISTOGRAM

Histogram is a bar graph that represents a frequency distribution of a quantitative variable.

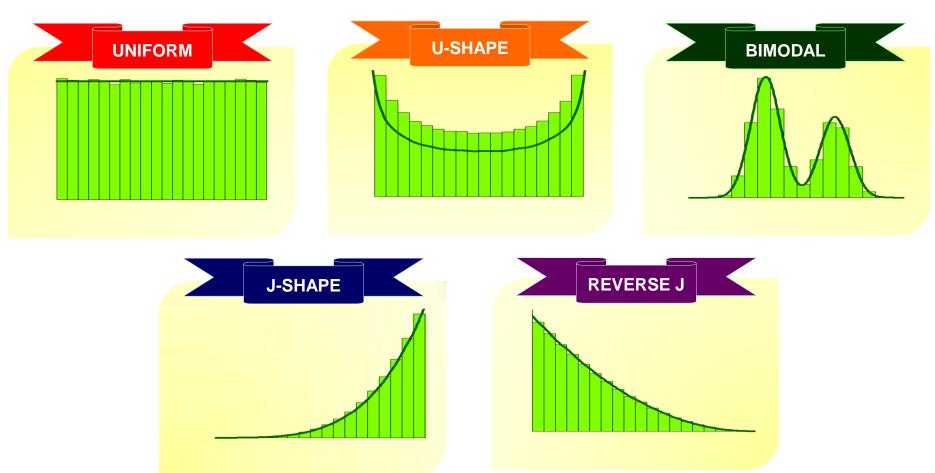
250 sacks of durian (in kg)
Number of sacks of durian
3
17
50
45
46
57
23
9



Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang

http://ocw.ump.edu.my/course/view.php?id=455

HISTOGRAM (IDENTIFY THE SHAPE OF DISTRIBUTION)-THREE IMPORTANT SHAPES


http://ocw.ump.edu.my/course/view.php?id=455

NC

BΥ

SA

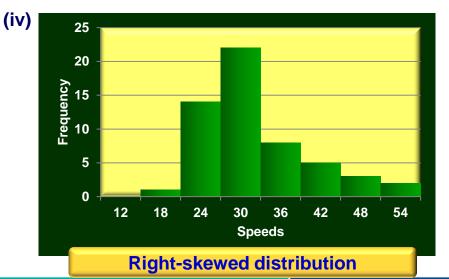
HISTOGRAM (IDENTIFY THE SHAPE OF DISTRIBUTION)-THREE IMPORTANT SHAPES

The traffic police observed the speeds of 55 cars passing through an accident crime scene in a village using radar device.

27	23	22	38	43	24	35	26	28	18	20
25	23	22	52	31	30	41	45	29	27	43
29	28	27	25	29	28	24	37	28	29	18
26	33	25	27	25	34	32	36	22	32	33
21	23	24	18	48	23	16	38	26	21	23

- (i) Classify these data into a grouped frequency distribution using class boundaries 12-18, 18-24, ..., 48-54.
- (ii) Find the class width.
- (iii) For the class 24-30, find the class midpoint, the lower and upper class boundaries.
- (iv) Construct a frequency histogram of these data. Then, identify the shape of distribution.

EXAMPLE 2.18-CONTINUE


SOLUTION

(i)	Class limits	Frequency
	12-18	1
	18-24	14
	24-30	22
	30-36	8
	36-42	5
	42-48	3
	48-54	2
(iii)	Midpoint= $\frac{24+30}{2}$ =	27

Lower class boundaries = 24 Upper class boundaries = 30

2

(ii) Class width=18-12=6

Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang

http://ocw.ump.edu.my/course/view.php?id=455

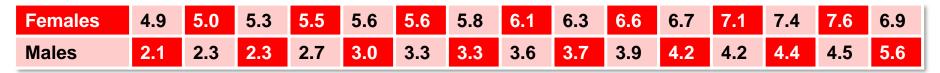
STEM AND LEAF PLOT

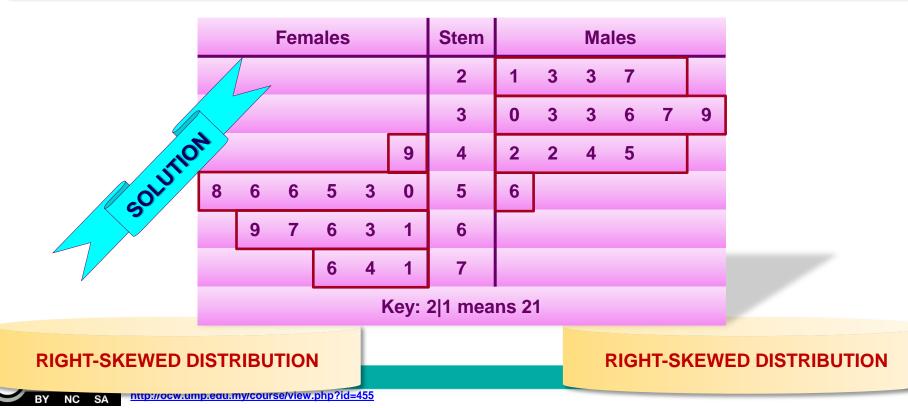
A stem and leaf plot displays the data of a sample using the actual digits that make up the data values.

											ne hea	-	EXAM for tv	PLE: vo diffe	erent	groups	3		
				EXAMF					GRO										
The	respons						picos	seconds	115	115	117	126	127	127	128	128	129	129	
	4.6	4.0	3.7	4.1	4.1	5.6			129	129	130	134	134	136	136	140	142	144	
	4.5	6.0	6.0	3.4	3.4	4.6			GRO	UP 2									
	3.7	4.2	4.6	4.7	4.1	3.7			125	125	126	134	136	138	138	142	143	146	
	3.4	3.3	3.7	4.1	4.5	4.6			146	147	148	148	153	155	155	157	162	164	
	4.4	4.8	4.3	4.4	5.1	3.9			G	iroup 1				Stem			Group	2	
Stem	Leaf				Key: 3 0	means 3.	0				7	5	5	11					
3	344	47	77	79				99	99	8	87	7	6	12	5	56			
4	011	1 1	23	4 4	55	666	6			6	64	4	0	13	4	6 8	8		
5	16							inaft	plot		4	2	0	14	2	3 6	6	7 8	8
6	00		103	f plot			em a	ind lear						15	3	5 5	7		
		ctem a	and les	f plot	-v-to	-back st	-	Key: 11	5 means	115				16	2	4			
(cc)			oter 2 (Pa Chuan Zu	in Li	Bach	atistics										Con	nmunitising	Technology	
В	Y NC SA	1.11.			/course/vi	ew.php?id=	455												

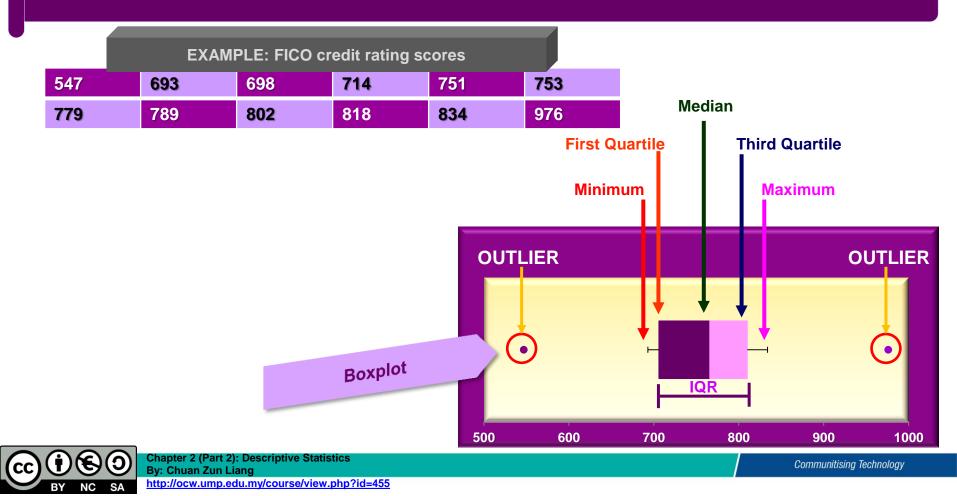
The following data show the 22 final examination marks for DUM 2413 Statistics & Probability course.

44	52	70	75	53	44	52	66	57	79	83	
68	94	66	59	45	69	48	53	80	95	44	


Construct the stem-and-leaf plot for the data. Then, identify the distribution.

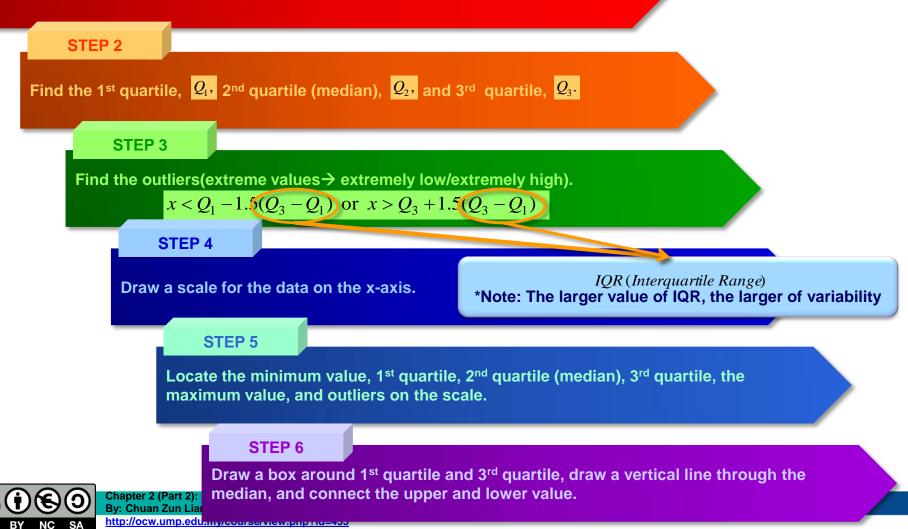

SOLUTION												
Stem	Lea	ıf	Ke	ey: 4 4	meai	ns 44						
4	4	4	4	5	8							
5	2	2	3	3	7	9						
6	6	6	8	9								
7	0	5	9									
8	0	3										
9	4	5										

SHAPE OF DISTRIBUTION: RIGHT-SKEWED DISTRIBUTION


The data shown represents the sample of percentage of unemployment in a particular country according to gender. Construct a back-to-back (mixture) stem and leaf plot. Then, compare the distribution of the two groups.

BOXPLOT

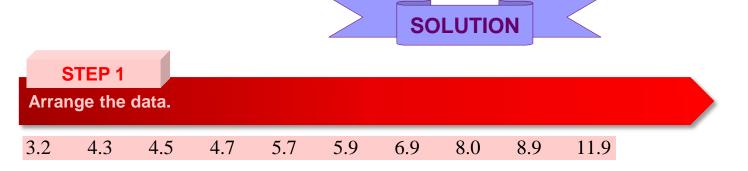
A boxplot is a graphic representation of the 5-number summaries (minimum. first quartile, median (second quartile), third quartile and maximum).



PROCEDURE FOR CONSTRUCTING A BOXPLOT

STEP 1

CC

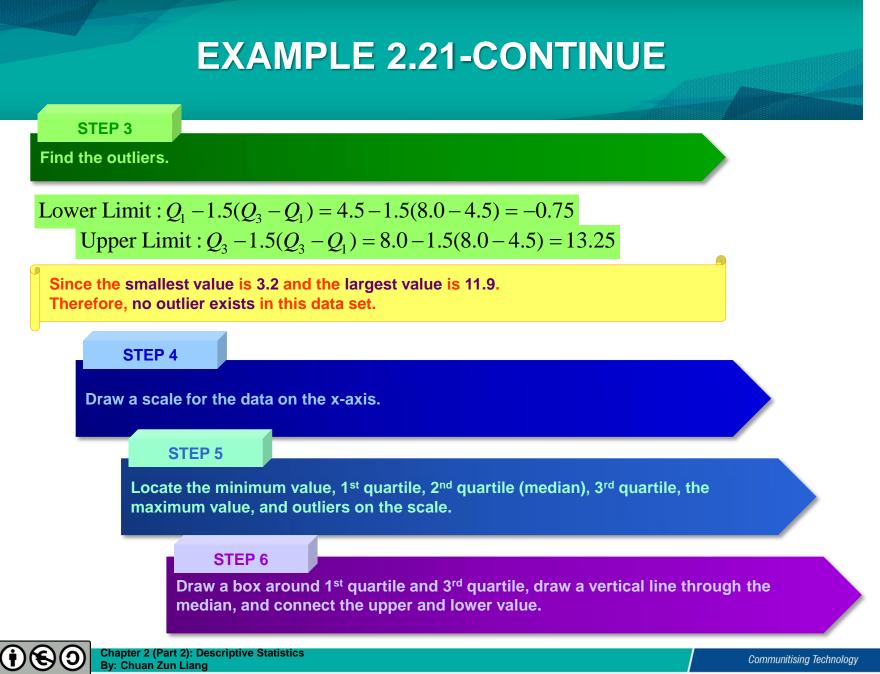

Arrange the data in ascending order.

EXAMPLE 2.21

Plot a box-plot for the following data. Then describe the shape of distribution.

a. 3.2	5.9	4.3	6.9	4.5	8.0	4.7	8.9	5.7	11.9
b. 5.8	9.7	6.7	13.4	6.8	14.7	7.2	16.4	8.2	28.1

STEP 2

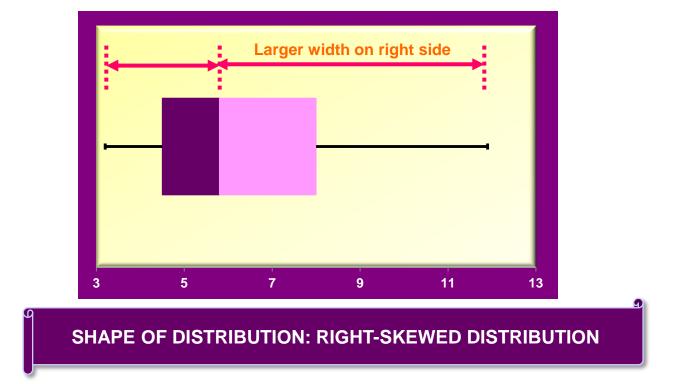

CC

Find the 1st quartile, 2nd quartile (median) and 3rd quartile.

$$Q_{1} = x_{c=\frac{1(10)}{4}=2.5} \implies x_{3} = 4.5$$

$$Q_{2} = x_{c=\frac{2(10)}{4}=5} \implies \frac{x_{5} + x_{6}}{2} = \frac{5.7 + 5.9}{2} = 5.8$$

$$Q_{3} = x_{c=\frac{3(10)}{4}=7.5} \implies x_{8} = 8.0$$

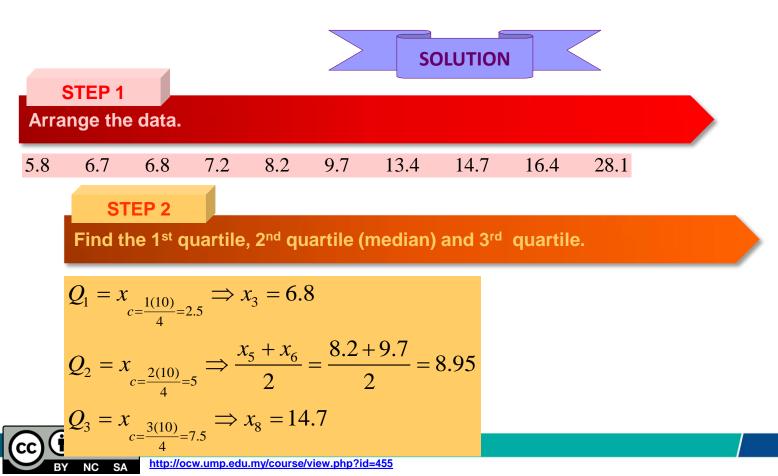

http://ocw.ump.edu.my/course/view.php?id=455

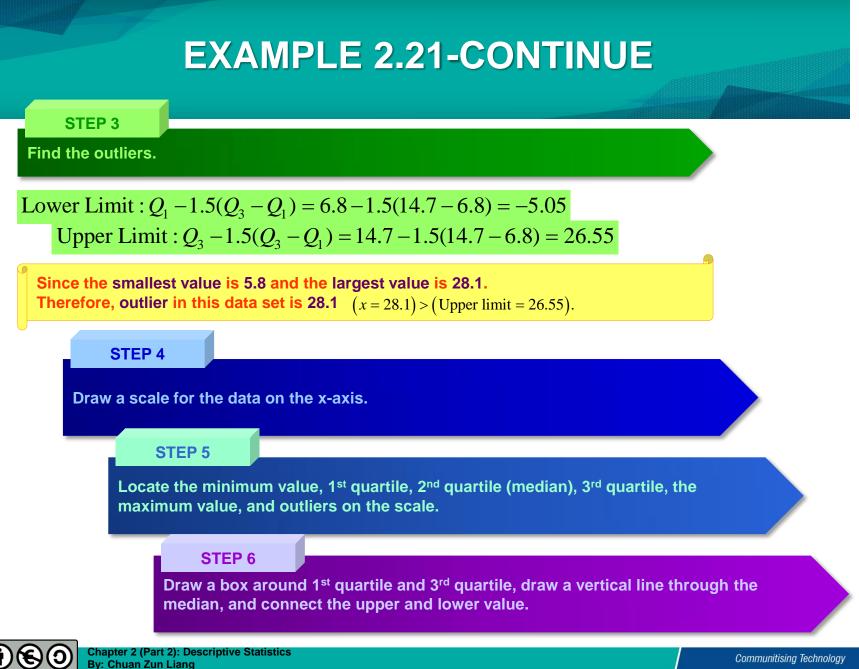
CC

NC

SA

EXAMPLE 2.21-CONTINUE

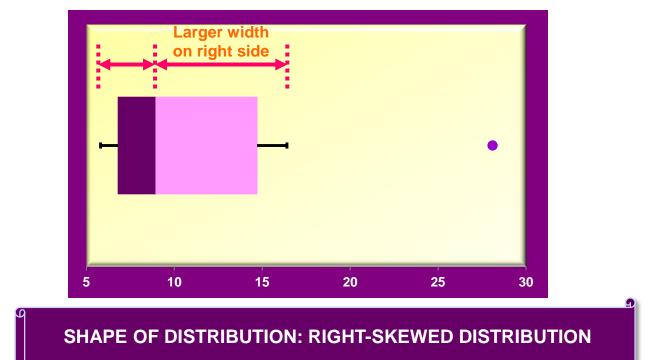



Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

EXAMPLE 2.21-CONTINUE

Plot a box-plot for the following data. Then describe the shape of distribution.

a. 3.25.94.36.94.58.04.78.95.711.9b. 5.89.76.713.46.814.77.216.48.228.1


http://ocw.ump.edu.my/course/view.php?id=455

CC

SA

NC

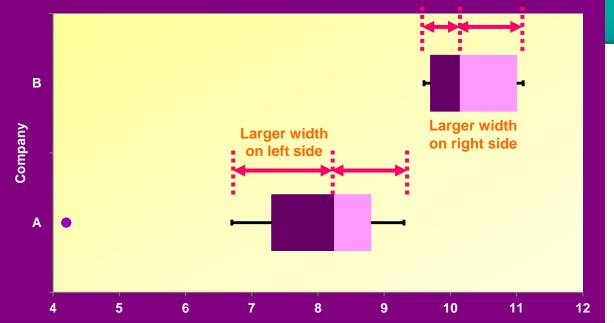
EXAMPLE 2.21-CONTINUE

Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

EXAMPLE 2.22

Two sample of ten spring made out of the steel rods supplied by two different companies were compared. The measurement of flexibility (in N/m) for each spring was recorded as follows.

Company A	4.2	6.7	7.3	7.5	8.0	8.5	8.7	8.8	9.2	9.3
Company B	9.6	9.7	9.8	9.9	10.1	10.2	11.0	11.0	11.0	11.1


Compare the distributions, average and variation of both data using boxplots.

SOLUTION								
Company	Α	В						
Minimum	6.7	9.6						
1 st Quartile	7.3	9.8						
2 nd Quartile	8.25	10.15						
3 rd Quartile	8.8	11.0						
Maximum	9.3	11.1						
Outlier Upper Limit Lower Limit	1st observation: 4.2 5.05 11.05	No outlier 8.00 12.8						
Chapter 2 (Part 2): Descriptive Statistic								

Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang

EXAMPLE 2.22-CONTINUE

SHAPE OF DISTRIBUTION:

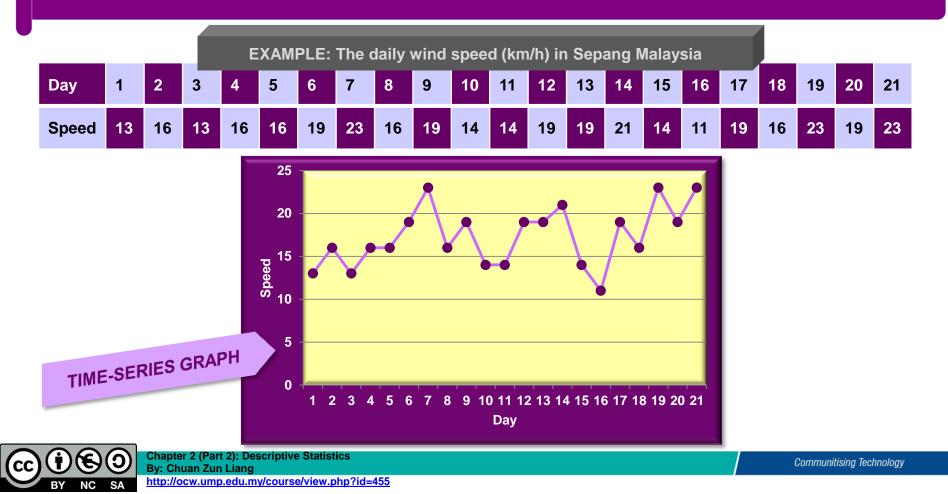
Company A: Left-skewed distribution; Company B: Right-skewed distribution

AVERAGE:

Data of Company B has higher average compared to Company A. This is due to

 $(Median_B = 10.15) > (Median_A = 8.25)$

VARIATION:


Data of Company A is more variable compared to Company B. This is due to $(IQR_A = 8.8 - 7.3 = 1.5) > (IQR_B = 11.0 - 9.8 = 1.2)$

*NOTE: The median is more robust in measure the average of the skewed data compare to mean. Thus we always use the median to measure the average of skew data.

TIME-SERIES GRAPH

A time-series graph is a graph of time-series data, which are quantitative data that have been collected at different points in time (yearly, monthly, quarterly, weekly, etc.).

EXAMPLE 2.23

Table below shows Malaysia's exports (RM million) of tyres from 2002-2011.

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Exports	164.01	191.84	164.43	321.63	292.64	243.89	245.02	428.20	301.73	413.65

Construct a time-series graph for the data above.

Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

THANK YOU END OF CHAPTER 2 (PART 2)

Chapter 2 (Part 2): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

Communitising Technology