

DUM 2413 STATISTICS & PROBABILITY

CHAPTER 2 DESCRIPTIVE STATISTICS

PREPARED BY:

DR. CHUAN ZUN LIANG; DR. NORATIKAH ABU; DR. SITI ZANARIAH SATARI FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY chuanzl@ump.edu.my; atikahabu@ump.edu.my; zanariah@ump.edu.my

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

CONTENT

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

EXPECTED OUTCOMES

- Able to organise and represent qualitative and quantitative data using an appropriate analysis tool
- Able to differentiate between the grouped and ungrouped data
- Able to summarise the data using non-graphical and graphical exploratory data analysis tools
- Able to apply Chebyshev's Theorem in applications

2.1 DATA ORGANISATION AND FREQUENCY DISTRIBUTION

2.2 TYPES OF GRAPH

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

Communitising Technology

DATA PRESENTATION

Data presentation is a method to *summarise, organise* and communicate information for a set of data using a variety tools such as diagrams, frequency distribution, charts and graphs.

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

ORGANISING AND GRAPHING QUALITATIVE DATA FREQUENCY DISTRIBUTION

A frequency distribution represents the tabulation of data according all of several categories partitioned from a data set.

EXAMPLE: The blood groups of A, B, AB, and O of randomly selected from a blood bank.

0	Α	В	0	0	0	0	0	AB	0
0	0	0	В	0	В	0	Α	Α	Α
0	Α	Α	В	AB	Α	В	Α	Α	Α
Α	0	Α	0	0	Α	Α	0	0	Α
0	0	0	0	Α	Α	Α	Α	Α	AB

Blood Group	Frequency
Α	20
В	5
AB	3
0	22
	AT DIBLITION

FREQUENCY DISTRIE

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

50 road traffic accidents categorised according the types of vehicles involved are listed below, where L denotes lorry, M1 denotes motorcycle, M2 denotes motorcar, and O denotes other causes. Construct a frequency distribution to summarise these data according the types of vehicles involved in road traffic accidents.

M1	M1	M1	L	L	M2	M2	M2	M2	M2
0	0	M2	M2	M2	L	L	M1	M1	M1
L	M1	M2	0	M1	M1	M1	M1	M1	M1
M1	M2	M1	M1	M2	L	L	M1	M1	L
L	M1	M1	M1	M2	M1	M1	0	0	0

SOLUTION								
Types of vehicles	Frequency							
M1	23							
M2	12							
L	9							
0	6							

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

ORGANISING AND GRAPHING QUALITATIVE DATA PIE CHART

A pie chart represents the proportional to the frequency counted according all of several categories partitioned from a data set as slices of a circle.

EXAMPLE: The total number of undergraduate majors from the 4 local universities

(cc)

BY

NC

SA

A researcher from UMP interviewed 1540 employees of a company regarding their job satisfaction. The responses are summarised in table below.

Job satisfaction	satisfaction Highly satisfied		Little satisfied	Not satisfied	
Number of employess	370	640	370	160	

(i) Identify the variable and type of variable involved in this study.

Job stress; Qualitative

- (ii) Based on the answer in (i), state the level of measurement of the variable.
 - Ordinal-level
- (ii) Draw a chart to represent the contents in the table.

ORGANISING AND GRAPHING QUALITATIVE DATA PARETO CHART

A Pareto chart is a chart constitute both bars and a line graph. The bars represent the frequency according all of several categories partitioned from a data set in descending order. Meanwhile, the line graph represents the cumulative frequencies.

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

NC

SA

The table listing the number of consumer complaints against the airline services according to complaint category.

Complaint Category		Frequency Complaint Category			Frequency
Advertising	(A)	68	Flight problems	(F2)	2031
Baggage	(B)	1421	Over-sales	(O1)	454
Customer Service	(C)	1715	Refunds	(R1)	1106
Disability	(D)	477	Reservations/ticketing/boarding (R2)	1159
Fares	(F1)	523	Other	(O2)	322

(i) Construct a Pareto chart depicting this information.

(ii) What complaints would you recommend the airlines pay attention to correcting if they want to have the most effect on the overall number of complaints?

455

(CC)

NC

SA

http://ocw.ump.edu.my/course/view.php?id=455

CC

NC

http://ocw.ump.edu.my/course/view.php?id=455

BY

NC

SA

EXAMPLE 2.4 (UNGROUPED DATA)

A lecturer conducted a study for her statistics students. One of the variable of her study is the heights of students. The table below shows the last digits of the heights of 36 students. Construct a frequency distribution with 10 categories.

0	1	6	5	5	5	0	3	3
5	5	8	8	0	5	5	5	0
8	0	2	5	3	1	9	5	5
5	5	4	6	5	0	0	5	0

	SOLUTION	
LAST DIGITS	FREQU	ENCY
0	8	
1	2	
2	1	
3	3	
4	1	
5	15	
6	2	
7	0	
8	3	
9	1	

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

EXAMPLE 2.5 (GROUPED DATA)

The table below shows the number of pairs of footwear sold on 50 consecutive weeks for a retail store. Construct a frequency distribution for these data.

EXAMPLE 2.5-CONTINUE (GROUPED DATA)

62	21	4	26	7	38	64	12	38	45	
6	33	55	62	48	49	7	9	41	21	
30	31	3	25	57	48	8	18	43	72	
23	5	8	37	31	31	39	65	53	4	
75	17	14	61	50	51	38	36	40	56	

STEP 3 & 4	STEP 5	STEP 6
Class	Tally	Frequency
3-13		11
14-24	JHT 1	6
25-35		7
36-46		10
47-57		9
58-68	₩ T	5
69-79		2

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

ORGANISING AND GRAPHING QUANTITATIVE DATA FREQUENCY POLYGON

A frequency polygon is a line graph which joining the midpoints of the upper edges of the rectangles in a histogram. Similar like histogram, a frequency polygon can illustrate the shapes of distribution.

A team of biologists measured the height of 200 plants as summarised in the table below. Based on these data, construct a frequency polygon.

	Height(cm)	46-50	51-55	56-60	61-65	66-70	
	Frequency	23	64	57	32	24	
		S	OLUTION				
Height (cm)	46-50	51-55	56-60	61-65		66-70
Midpoin	t	$\frac{(46+50)}{2} = 48$	$\frac{(51+55)}{2} = 53$	$\frac{(56+60)}{2} =$	$= 58 \frac{(61+65)}{2}$	(5) = 63	$\frac{(66+70)}{2} = 68$
Frequen	су	23	64	57	32		24

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

EXAMPLE 2.6-CONTINUE

SOLUTION									
Height (cm)	41-45	46-50	51-55	56-60	61-65	66-70	71-75		
Midpoint	43	48	53	58	63	68	73		
Frequency	0	23	64	57	32	24	0		

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

Communitising Technology

ORGANISING AND GRAPHING QUANTITATIVE DATA OGIVE (CUMULATIVE FREQUENCY GRAPH)

An ogive, also known as a cumulative frequency graph is a line graph that depicts cumulative frequencies, which use the lower or upper class boundaries

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

CAUTION

CLASS LIMITS ≠ CLASS BOUNDARIES

***NOTE:** The class width always calculated based on the distance between class boundary

49

UL

50

LL

54

UL

55

11

59

UL

45

LL

35

L L

ΒY

NC

SA

(cc)

39

UL

40

LL

44

UL

A manager interested to study the effectiveness of a particular training onto the productivity of his staffs. To purse his objective, he collected the productivity of his staffs after attended the training as recorded in the table below. Construct an ogive for the data below.

	Productivity (units per hours)	Number of workers
$2 \le x < 4$	2-4	5
	4-6	10
	6-8	18
	8-10	32
	10-12	23
	12-14	12

	SOLU	TION	
Productivity	Number of workers	Upper Class Boundary	Cumulative Frequency
0-2	0	2	0
2-4	5	4	0 + 5 = 5
4-6	10	6	5 + 10 = 15
6-8	18	8	15 + 18 = 33
8-10	32	10	33 + 32 = 65
10-12	23	12	65 + 23 = 88
12-14	12	14	88 + 12 = 100

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang

Communitising Technology

SUMMARY

FREQUENCY DISTRIBUTION, FREQUENCY POLYGON AND OGIVE

THANK YOU END OF CHAPTER 2 (PART 1)

Chapter 2 (Part 1): Descriptive Statistics By: Chuan Zun Liang http://ocw.ump.edu.my/course/view.php?id=455

Communitising Technology