

# FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY FINAL EXAMINATION

COURSE : CALCULUS

COURSE CODE : DUM1123

LECTURER : NORHAFIZAH BINTI MD SARIF

NADIRAH BINTI MOHD NASIR INTAN SABARIAH BINTI SABRI

DATE : 29 DECEMBER 2014

**DURATION** : 3 HOURS

SESSION/SEMESTER : SESSION 2014/2015 SEMESTER I

PROGRAMME CODE : DEE/DMM/DAA/DCS/DKK/DSH

#### **INSTRUCTIONS TO CANDIDATES**

- 1. This question paper consists of **FIVE** (5) questions. Answer **ALL QUESTIONS**.
- 2. All the calculations and assumptions must be clearly stated.
- 3. Your final answers must in **FOUR (4) decimal places** (if any).
- 4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

#### **EXAMINATION REQUIREMENTS**

1. Scientific calculator

#### DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of **NINE** (9) printed pages including front page.

(a) Use numerical method to make a conjecture about the value of

$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1}$$

(5 Marks)

- (b) Evaluate the following
  - (i)  $\lim_{x \to -1} \frac{2x^2 4x + 1}{5x^3 + 7}$
  - (ii)  $\lim_{x \to 1} \frac{\sqrt{x+3} 2}{x 1}$
  - (iii)  $\lim_{x \to \infty} \frac{9x^2 + 2x 1}{x + 5}$

(11 Marks)

(c) A function f is given as

$$f(x) = \frac{x^2 - x - 12}{x + 3}$$

- (i) Find f(-3)
- (ii) Find  $\lim_{x \to -3} f(x)$ .
- (iii) Does f(x) continuous at x = -3? Give a reason to your answer.

(7 Marks)

(a) Given two parametric equations

$$y = \frac{t}{1+t}$$
 and  $x = (1+t)^{-2}$ .

Find  $\frac{dy}{dx}$ .

(7 Marks)

(b) If  $y = 4x^2 + \frac{2}{x^3}$ , show that  $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 6y = 0$ .

(6 Marks)

(c) Find  $\frac{dy}{dx}$  for the implicit function  $e^{-3x} - 3xy^2 = y^3$ .

(6 Marks)

(a) A curve has equation

$$2x^2 + 7y - 3 = 0$$
.

Find slope for the tangent line at point (1,4).

(4 Marks)

(b) The volume of a spherical balloon is increasing at a constant rate of  $5\text{m}^3/\text{s}$ . Find the rate of change of its radius when the volume of the balloon is  $\frac{32}{3}\pi\text{m}^3$ .

Given, volume of sphere  $V = \frac{4}{3}\pi r^3$ .

(6 Marks)

- (c) Given a function of  $f(x) = 2x^3 9x^2 + 12x 3$ 
  - (i) Find the critical point, local maximum and minimum points of function
  - (ii) Determine the point of inflection of f(x) function (if any), hence sketch the graph.

(11 Marks)

(a) Evaluate

$$\int \frac{x+1}{x^2} \, dx$$

(3 Marks)

(b) Find the integration of

$$\int_{0}^{1} e^{2x} (1+2x) \, dx$$

(7 Marks)

(c) Integrate

$$\int \frac{x^2}{(x+1)(x-1)} dx$$

(7 Marks)

- (a) Figure 1 shows a region bounded by y = x + 3 and  $y = x^2 + 1$ .
  - (i) Determine the point of intersection.
  - (ii) Find the area of the region.

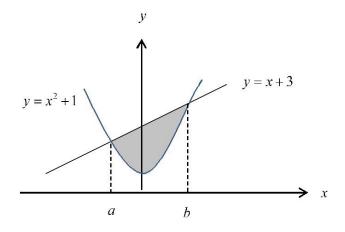
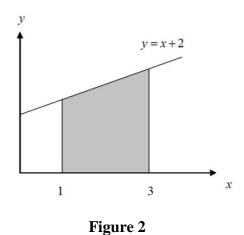




Figure 1

(9 Marks)

(b) Find the volume of the solid generated by revolving the shaded region in Figure 2 about the x-axis.



(11 Marks)

## **APPENDIX**

## **Derivatives of Commonly Used Functions**

| Function       | Derivatives formulae |
|----------------|----------------------|
| y = f(x)       | f'(x)                |
| constant, k    | 0                    |
| x              | 1                    |
| x <sup>n</sup> | $nx^{n-1}$           |
| kf(x)          | kf '(x)              |
| $e^{x}$        | $e^x$                |
| $e^{-x}$       | $-e^{-x}$            |
| $\ln x$        | $\frac{1}{x}$        |
| $\sin x$       | $\cos x$             |
| $\cos x$       | $-\sin x$            |
| tan x          | $\sec^2 x$           |
| sec x          | sec x tan x          |
| cot x          | $-\csc^2 x$          |
| csc x          | $-\csc x \cot x$     |

#### **Chain Rule**

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

#### **Product Rule**

$$\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$$

## **Quotient Rule**

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

# Parametric Rule

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

#### **Integration by Parts**

$$\int u \, dv = uv - \int v \, du$$

#### **Integration of Commonly Used Functions**

| Function      | Integration Formulae                  |
|---------------|---------------------------------------|
| y = f(x)      | $\int f(x)dx$                         |
| constant, k   | kx+C                                  |
| $\chi^n$      | $\frac{x^{n+1}}{n+1} + C,  n \neq -1$ |
| $\frac{1}{x}$ | $\ln  x  + C$                         |
| $e^x$         | $e^x + C$                             |
| $e^{-x}$      | $-e^{-x}+C$                           |
| sin x         | $-\cos x + C$                         |
| cos x         | $\sin x + C$                          |
| tan x         | $\ln  \sec x  + C$                    |
| sec x         | sec x tan x                           |
| $\cot x$      | $-\csc^2 x$                           |
| CSC X         | $-\csc x \cot x$                      |

## **Area between Two Curves**

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

#### **Surface Area**

$$S = \int_a^b 2\pi y \sqrt{1 + \left[ f'(x) \right]^2} dx$$

#### **Volume of Revolution**

$$V = \pi \int_{a}^{b} y^{2} \, dx$$