

FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY FINAL EXAMINATION

COURSE	:	CALCULUS
COURSE CODE	:	DUM1123
LECTURER	:	NORHAFIZAH BINTI MD SARIF MOHD ZUKI BIN SALLEH
DATE	:	10 JUNE 2015
DURATION	:	3 HOURS
SESSION/SEMESTER	:	SESSION 2014/2015 SEMESTER II
PROGRAMME CODE	:	DEE/DMM/DKK/DCS/DAA

INSTRUCTIONS TO CANDIDATES

- 1. This question paper consists of **FIVE** (5) questions. Answer **ALL** questions.
- 2. All answers to a new question should start on new page.
- 3. All the calculations and assumptions must be clearly stated.
- 4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS

- 1. APPENDIX
- 2. Scientific calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of **EIGHT (8)** printed pages including front page.

(a) Find

 $\lim_{x \to +\infty} \left(\sqrt{x^2 + 3x} - x \right)$

by using numerical method.

(CO1,PO1/3 Marks)

(b) Find

(i)
$$\lim_{x \to -1} \frac{-4x^2 - 2x - 8}{-2x^3 - 7}.$$

(ii) $\lim_{x \to \infty} \frac{7x^2 + 5x - 2}{x^2 - 3}.$

(CO1,PO1/5 Marks)

(c) Given a piece-wise function

$$f(x) = \begin{cases} x^2 , & x < 2 \\ cx + 3 , & 2 \le x \le 4 \\ 10 , & x > 4. \end{cases}$$

- (i) Find the value of c if f(x) is continuous at x = 2.
- (ii) Determine whether the function is continuous at x = 4.

(CO1,PO1/10 Marks)

(a) Given parametric equations

$$x = (1 - 2t)^3, \quad y = \frac{1}{1 - t}.$$

Find $\frac{dy}{dx}$.

(CO1,PO1/6 Marks)

(b) Given the function

$$y = 3e^{-2x} + 4e^{3x}.$$

Show that

$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 6y = 0.$$

(c) Find
$$\frac{dy}{dx}$$
 for the implicit function
 $\sin y - 3xy = 2y^3$.

(CO1,PO1/6 Marks)

(a) Evaluate

$$\int \frac{x^2}{x^3 + 3} \, dx.$$

(CO2,PO1/5 Marks)

(b) Use integration by part to evaluate

$$\int e^{-3x} (1-2x)^2 \, dx.$$

(c) Use partial fractions to evaluate

$$\int \frac{2(x-1)}{x^2 + x} dx.$$

(CO2,PO1/8 Marks)

(a) Given a function

$$y = \frac{(x+1)^2}{x-1}.$$

- (i) Find all the critical points.
- Locate all the maximum and minimum points by using the first derivative test.

(CO2,PO1/10 Marks)

(b) Two resistors with resistances R_1 and R_2 are connected in parallel as shown in Figure 1.

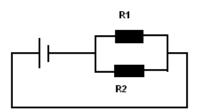


Figure 1

The electrical behavior of R_1 and R_2 is related to a resistor of resistance R such that

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

The change of R_1 with respect to time is denoted as $\frac{dR_1}{dt}$ and R_2 is a constant.

Show that

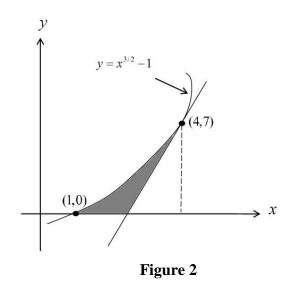
$$\frac{dR}{dt} = \left(\frac{R_2}{R_1 + R_2}\right)^2 \frac{dR_1}{dt}$$

(CO2,PO1/8 Marks)

(a) Find the surface area that is generated by revolving the curve $y = \sqrt{9 - x^2}$ between -2 < x < 2 about the x-axis.

(CO2,PO1/8 Marks)

(b) Figure 2 shows that the curve $y = x^{3/2} - 1$ intersects the *x*-axis at (1,0). The tangent line to the curve touches the curve at the point (4,7).



(i) Show that

$$\int_{1}^{4} \left(x^{3/2} - 1 \right) dx = \frac{47}{5}.$$

(ii) Find the area of the shaded region enclosed by the curve, the tangent line and the *x*-axis.

(CO2,PO1/16 Marks)

END OF QUESTION PAPER

APPENDIX

Function	Derivatives formulae	Integration Formulae
y = f(x)	f'(x)	$\int f(x)dx$
constant, k	0	kx + C
x^n	nx^{n-1}	$\frac{x^{n+1}}{n+1} + C, \ n \neq -1$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\ln x + C$
e ^x	e^{x}	$e^{x}+C$
ln x	$\frac{1}{x}$	$x \ln x + C$
$\sin x$	cos x	$-\cos x + C$
$\cos x$	$-\sin x$	$\sin x + C$
tan x	$\sec^2 x$	$\ln \sec x + C$
sec x	sec x tan x	$\sec x \tan x + C$

Derivatives and Integration of Commonly Used Functions

Chain Rule	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
Product Rule	If $y = u(x) \cdot v(x)$, then $\frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$
Quotient Rule	If $y = \frac{u(x)}{v(x)}$, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
Parametric Rule	If $y = f(t)$ and $x = f(t)$ then $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Integration by Parts	$\int u dv = uv - \int v du$
Area between Two Curves	$y = f(x)$ A $y = g(x)$ $A = \int_{a}^{b} [f(x) - g(x)] dx$
Surface Area	$S = \int_{a}^{b} 2\pi y \sqrt{1 + \left[y'(x) \right]^{2}} dx$
Volume of Revolution	$V = \pi \int_{a}^{b} y^{2} dx$