

FACULTY OF INDUSTRIAL SCIENCES \& TECHNOLOGY FINAL EXAMINATION

COURSE	$:$	CALCULUS
COURSE CODE	$:$	DUM1123
LECTURER	$:$	NORHAFIZAH BINTI MD SARIF
		MOHD ZUKI BIN SALLEH
DATE	$:$	10 JUNE 2015
DURATION	$:$	3 HOURS
SESSION/SEMESTER	$:$	SESSION 2014/2015 SEMESTER II
PROGRAMME CODE	$:$	DEE/DMM/DKK/DCS/DAA

INSTRUCTIONS TO CANDIDATES

1. This question paper consists of FIVE (5) questions. Answer ALL questions.
2. All answers to a new question should start on new page.
3. All the calculations and assumptions must be clearly stated.
4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS

1. APPENDIX
2. Scientific calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO
This examination paper consists of EIGHT (8) printed pages including front page.

QUESTION 1

(a) Find

$$
\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+3 x}-x\right)
$$

by using numerical method.
(CO1,PO1/3 Marks)
(b) Find
(i) $\quad \lim _{x \rightarrow-1} \frac{-4 x^{2}-2 x-8}{-2 x^{3}-7}$.
(ii) $\lim _{x \rightarrow \infty} \frac{7 x^{2}+5 x-2}{x^{2}-3}$.

(CO1,PO1/5 Marks)

(c) Given a piece-wise function

$$
f(x)=\left\{\begin{array}{cc}
x^{2}, & x<2 \\
c x+3, & 2 \leq x \leq 4 \\
10, & x>4
\end{array}\right.
$$

(i) Find the value of c if $f(x)$ is continuous at $x=2$.
(ii) Determine whether the function is continuous at $x=4$.
(CO1,PO1/10 Marks)

QUESTION 2

(a) Given parametric equations

$$
x=(1-2 t)^{3}, \quad y=\frac{1}{1-t} .
$$

Find $\frac{d y}{d x}$.

(CO1,PO1/6 Marks)

(b) Given the function

$$
y=3 e^{-2 x}+4 e^{3 x}
$$

Show that

$$
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=0
$$

(CO1,PO1/5 Marks)
(c) Find $\frac{d y}{d x}$ for the implicit function

$$
\sin y-3 x y=2 y^{3}
$$

QUESTION 3

(a) Evaluate

$$
\int \frac{x^{2}}{x^{3}+3} d x
$$

(CO2,PO1/5 Marks)
(b) Use integration by part to evaluate

$$
\int e^{-3 x}(1-2 x)^{2} d x
$$

(CO2,PO1/10 Marks)
(c) Use partial fractions to evaluate

$$
\int \frac{2(x-1)}{x^{2}+x} d x .
$$

(CO2,PO1/8 Marks)

QUESTION 4

(a) Given a function

$$
y=\frac{(x+1)^{2}}{x-1}
$$

(i) Find all the critical points.
(ii) Locate all the maximum and minimum points by using the first derivative test.

(CO2,PO1/10 Marks)

(b) Two resistors with resistances R_{1} and R_{2} are connected in parallel as shown in

Figure 1.

Figure 1

The electrical behavior of R_{1} and R_{2} is related to a resistor of resistance R such that

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

The change of R_{1} with respect to time is denoted as $\frac{d R_{1}}{d t}$ and R_{2} is a constant.
Show that

$$
\frac{d R}{d t}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right)^{2} \frac{d R_{1}}{d t}
$$

QUESTION 5

(a) Find the surface area that is generated by revolving the curve $y=\sqrt{9-x^{2}}$ between $-2<x<2$ about the x-axis.
(CO2,PO1/8 Marks)
(b) Figure 2 shows that the curve $y=x^{3 / 2}-1$ intersects the x-axis at (1,0). The tangent line to the curve touches the curve at the point $(4,7)$.

Figure 2
(i) Show that

$$
\int_{1}^{4}\left(x^{3 / 2}-1\right) d x=\frac{47}{5}
$$

(ii) Find the area of the shaded region enclosed by the curve, the tangent line and the x-axis.

APPENDIX

Derivatives and Integration of Commonly Used Functions

Function $y=f(x)$	Derivatives formulae $f^{\prime}(x)$	Integration Formulae $\int f(x) d x$
constant, k	0	$k x+C$
x^{n}	$n x^{n-1}$	$\frac{x^{n+1}}{n+1}+C, n \neq-1$
$\frac{1}{x}$	$-\frac{1}{x^{2}}$	$\ln \|x\|+C$
e^{x}	e^{x}	$e^{x}+C$
$\ln x$	$\frac{1}{x}$	$x \ln x+C$
$\sin x$	$\cos x$	$-\cos x+C$
$\cos x$	$-\sin x$	$\sin x+C$
$\tan x$	$\sec { }^{2} x$	$\ln \|\sec x\|+C$
$\sec x$	$\sec x \tan x$	$\sec x \tan x+C$

Chain Rule	$\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
Product Rule	If $y=u(x) \cdot v(x)$, then $\frac{d y}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Quotient Rule	If $y=\frac{u(x)}{v(x)}$, then $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
Parametric Rule	If $y=f(t)$ and $x=f(t)$ then $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Integration by Parts	$\int u d v=u v-\int v d u$
Area between Two Curves	$A=\int_{a}^{b}[f(x)-g(x)] d x$
Surface Area	$S=\int_{a}^{b} 2 \pi y \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
Volume of Revolution	$V=\pi \int_{a}^{b} y^{2} d x$

