

Exercise 10: Applications of Integrations

Topic 10.1 : Volume

1. Find the volume of the solid that results by revolving the region enclosed by the line x + y = 8 with $0 \le x \le 8$.

[Ans: $\frac{512}{3}\pi$]

[Ans: $\frac{48}{5}\pi$]

- 2. Find the volume of the solid of revolution when the region bounded by the curve $y^2 = 8x$ and $y = x^2$ revolves at 360° about x-axis.
- 3. Find the volume of the solid of revolution when the region bounded by the following curves revolves 360° about x-axis.
 - a) $y = x^2$, x = 0, x = 2 and y = 0
 - b) $y=1+x^3$, x=1, x=2 and y=0
 - c) $y = 9 x^2$ and y = 0
 - d) $y = x^2$ and y = 4x

[Ans: (a) $\frac{32\pi}{5}$, (b) $\frac{373\pi}{14}$ (c) $\frac{1296\pi}{5}$, (d) $\frac{2048}{15}\pi$]

- 4. Find the volume of the solid of revolution when the region bounded by the following curves revolves 360° about y-axis
 - a) $y = x^3$, x = 0, and y = 1
 - b) $y = 1 + x^3$, x = 1, and y = 9
 - c) $x = y^2$ and x = y + 2
 - d) $x = \sqrt{1+y}$, x = 0 and y = 3

[Ans: (a) $\frac{3\pi}{5}$, (b) $\frac{58\pi}{5}$ (c) $\frac{72\pi}{5}$, (d) 8π]

5. Sketch the region bounded by the curve $x = y^2 + 2$ and the line x = 6. Find the volume of the solid of revolution when the region bounded revolves at 360° about *x*-*axis*.

[Ans: 6π]

6. Find the volume of the solid of revolution when the region bounded by the curve $y = 2(x^2 + 1)$, the x-axis and the lines x = 1, x = 2 revolves at 360° about x-axis.

[Ans: $\frac{712}{15}\pi$]

7. Find the volume of the solid of revolution when the region bounded by the curve y = x - 1, y = 4 - x and y = 0 revolves at 360° about x-axis.

[Ans: $\frac{9}{4}\pi$]

8. Consider a region R in the first quadrant bounded by two curves $y = \frac{1}{4}(4-x^2)$ and

 $y = \frac{1}{2}(4 - x^2)$ and the y-axis. Find the

- a) area of the region R
- b) volume of the solid of revolution when the bounded region R revolves 360° about y-axis.

[Ans: (a) $\frac{4}{3}$, (b) 2π]