Exercise 10: Applications of Integrations

Topic 10.1: Volume

1. Find the volume of the solid that results by revolving the region enclosed by the line $x+y=8$ with $0 \leq x \leq 8$.

$$
\text { [Ans: } \frac{512}{3} \pi \text {] }
$$

2. Find the volume of the solid of revolution when the region bounded by the curve $y^{2}=8 x$ and $y=x^{2}$ revolves at 360° about x -axis.
[Ans: $\frac{48}{5} \pi$]
3. Find the volume of the solid of revolution when the region bounded by the following curves revolves 360° about x -axis.
a) $y=x^{2}, x=0, x=2$ and $y=0$
b) $y=1+x^{3}, x=1, x=2$ and $y=0$
c) $y=9-x^{2}$ and $y=0$
d) $y=x^{2}$ and $y=4 x$

$$
\text { [Ans: (a) } \frac{32 \pi}{5} \text {, (b) } \frac{373 \pi}{14} \text { (c) } \frac{1296 \pi}{5} \text {, (d) } \frac{2048}{15} \pi \text {] }
$$

4. Find the volume of the solid of revolution when the region bounded by the following curves revolves 360° about y -axis
a) $y=x^{3}, x=0$, and $y=1$
b) $y=1+x^{3}, x=1$, and $y=9$
c) $x=y^{2}$ and $x=y+2$
d) $x=\sqrt{1+y}, x=0$ and $y=3$

$$
\text { [Ans: (a) } \frac{3 \pi}{5}, \text { (b) } \frac{58 \pi}{5} \text { (c) } \frac{72 \pi}{5} \text {, (d) } 8 \pi \text {] }
$$

5. Sketch the region bounded by the curve $x=y^{2}+2$ and the line $x=6$. Find the volume of the solid of revolution when the region bounded revolves at 360° about x axis.
[Ans: 6π]
6. Find the volume of the solid of revolution when the region bounded by the curve $y=2\left(x^{2}+1\right)$, the x -axis and the lines $x=1, x=2$ revolves at 360° about x -axis.

$$
\text { [Ans: } \frac{712}{15} \pi \text {] }
$$

7. Find the volume of the solid of revolution when the region bounded by the curve $y=x-1, y=4-x$ and $y=0$ revolves at 360° about x -axis.

$$
\text { [Ans: } \frac{9}{4} \pi \text {] }
$$

8. Consider a region R in the first quadrant bounded by two curves $y=\frac{1}{4}\left(4-x^{2}\right)$ and $y=\frac{1}{2}\left(4-x^{2}\right)$ and the y-axis. Find the
a) area of the region R
b) volume of the solid of revolution when the bounded region R revolves 360° about y-axis.

$$
\text { [Ans: (a) } \frac{4}{3} \text {, (b) } 2 \pi \text {] }
$$

