

Calculus Applications of Integration

By

Norazaliza Mohd Jamil & Norhafizah Md Sarif Faculty of Industrial Science & Technology norazaliza@ump.edu.my, norhafizah@ump.edu.my

Calculus by Norhafizah Md Sarif <u>http://ocw.ump.edu.my/course/view.php?id=452</u>

Communitising Technology

Description

<u>Aims</u>

This chapter is aimed to :

- 1. Consider various application of integration
- 2. evaluate the definite and indefinite integral
- 3. explain the basic properties of integral

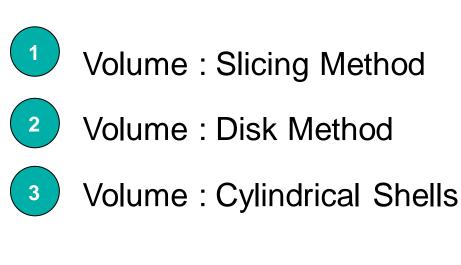
Expected Outcomes

- 1. Students should be able to use definite integral to find area between two curves
- 2. Students should be able to sketch graph to find area between curve and surface area
- 3. Students should be able to determine the length of a plane curve

<u>References</u>

1. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. *The First Course of Calculus for Science & Engineering Students*, Second Edition, UTM 2016.

Content



Volume: Slicing Method

- □ When the surface area is revolved about a line, it generates a volume.
- □ The slicing method is a way of computing the volume of a solid.
- This method use cross section (or slices) in planes perpendicular to x-axis or y-axis.
- Recall that, to find the area of a region, we divide the region into thin strips, approximate the area of each strip by the area of rectangle, and form Riemann sums to produce an integral for the area.
- Likewise, to find the volume of a solid, we divide the solid into thin slabs, approximate the volume of each slab, and form Riemann sums to produce an integral for the volume.

Volume: Slicing Method

Definition – The cross section is perpendicular to x-axis : The volume of a solid of known integrable cross-sectional area A(x) from x = a to x = b is the integral of A from a to b

$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi \left[R(x) \right]^{2} dx$$

where

$$A(x) = \pi (\text{radius})^2 = \pi [R(x)]^2$$

Volume: Slicing Method

Definition – The cross section is perpendicular to y-axis : The volume of a solid of known integrable cross-sectional area A(y) from y = c to y = d is the integral of A from c to d

$$V = \int_{c}^{d} A(y) dy = \int_{c}^{d} \pi \left[R(y) \right]^{2} dy$$

where

$$A(y) = \pi (\text{radius})^2 = \pi [R(y)]^2$$

Volume: Disks Method

Definition – Volume by disk perpendicular to the x-axis : Suppose *R* is the region bounded by y = f(x), the x-axis, x = a and x = b. The volume of the solid revolution that is generated by revolving the region *R* about the *x*-axis is

$$V = \int_{a}^{b} \pi \left[f(x) \right]^{2} dx$$

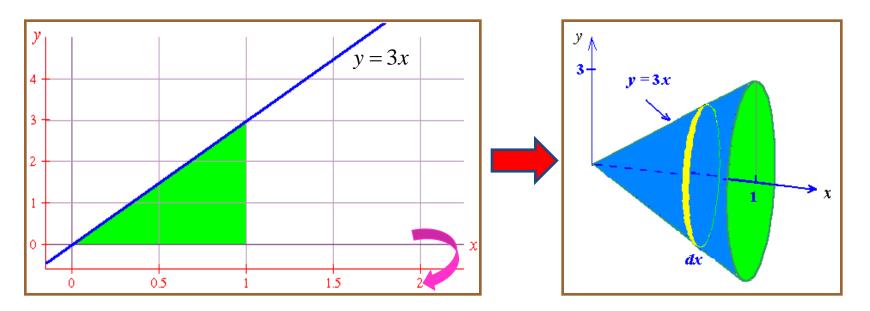
Volume: Disks Method

Definition – Volume by disk perpendicular to the y-axis : Suppose *R* is the region bounded by x = f(y), the y-axis, y = c and y = d. The volume of the solid revolution that is generated by revolving the region *R* about the *y*-axis is

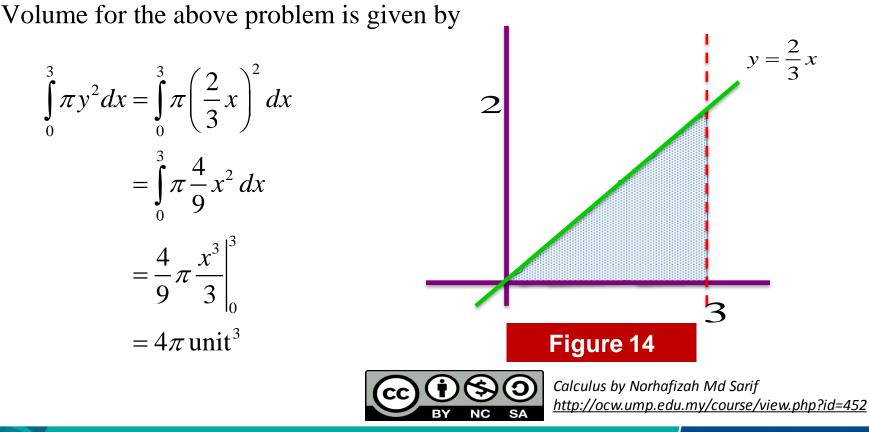
$$V = \int_{c}^{d} \pi \left[f(y) \right]^{2} dy$$

Disk Method

If the plane bounded by the curve y = f(x), the *x*-axis and $a \le x \le b$ is rotating through a complete revolutions about the *x*-axis, it will generate a solid symmetrical.

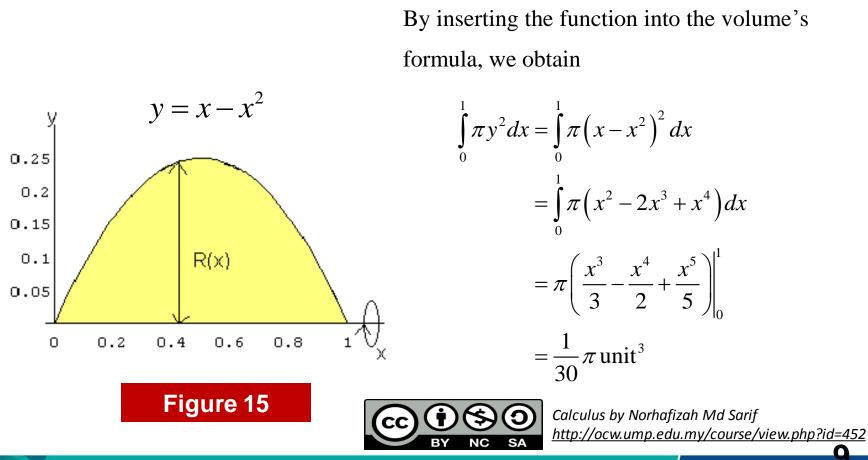


Find the volume that is generated by revolving the portion of the curve $y = \frac{2}{3}x$ between $0 \le x \le 3$ about x - axis



Find the volume that is generated by revolving the portion of the curve

 $y = x - x^2$ between $0 \le x \le 1$ about x - axis



Determine the volume of the solid obtain bounded by $y = x^2 - 5x + 7$, x = 1

x=5 about x-axis

In this example, the radius is simply the distance from x -axis to the curve

$$R = x^2 - 5x + 7$$

164

5

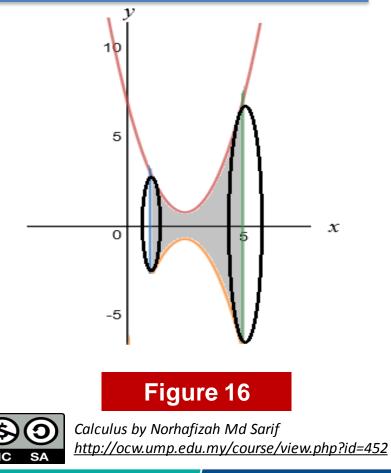
 $-\pi$

Hence

$$V = \int_{a}^{b} \pi [R(x)]^{2} dx$$

$$= \int_{1}^{5} \pi (x^{2} - 5x + 7) dx$$

$$= \pi \int_{1}^{5} x^{4} - 10x^{3} + 39x^{2} - 70x + 49dx$$



y

Find the volume of the solid generated by revolving the region between the *y* - axis and the curve, $y = \frac{3}{2}$ where $1 \le y \le 6$.

In this case, the radius is simply the distance from y -axis to the curve

$$R = \frac{3}{y}$$

Hence

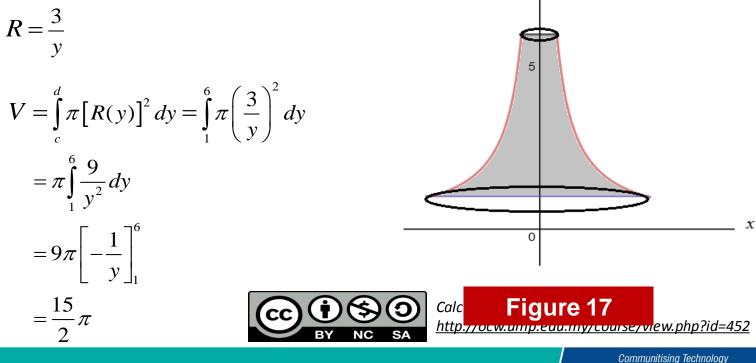
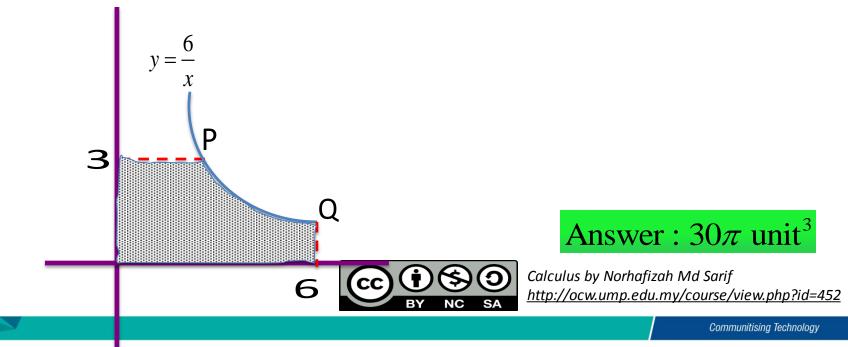


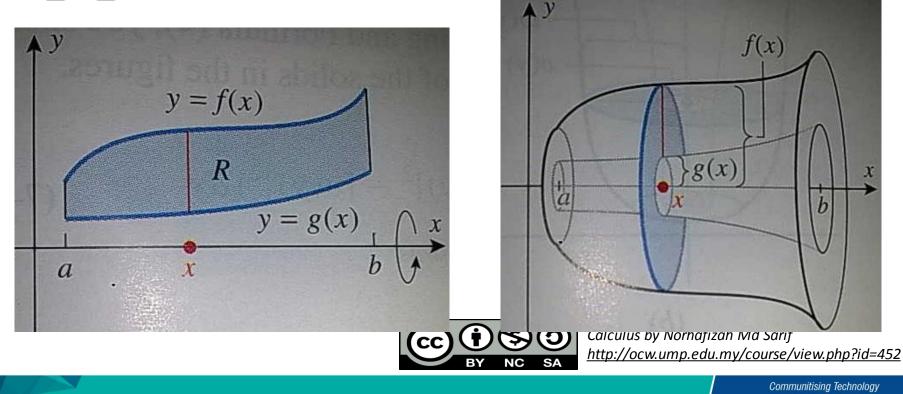
Figure below shows the curve $y = \frac{6}{x}$ and the lines x = 6, y = 3. Find the

- a) coordinates of points P and Q
- b) volume of the revolution of the solid generated when the shaded region revolves 360° about the *x*-axis.



Washers Method

With a small modification of the disk method, we can find the volume of a solid figure generated by revolving about the *x*-axis the region between two curves y = f(x) and y = g(x), where $f(x) \ge g(x)$ for $a \le x \le b$.



Washers Method

Definition – Volume by Washer perpendicular to x-axis : Suppose R is the region bounded by from y = f(x), y = g(x)x = a and x = b where $f(x) \ge g(x)$ in [a,b]. The volume of the solid revolution that is generated by revolving the region R about the *x*-axis is

$$V = \int_{a}^{b} \pi \left(\left[f(x) \right]^{2} - \left[g(x) \right]^{2} \right) dx$$

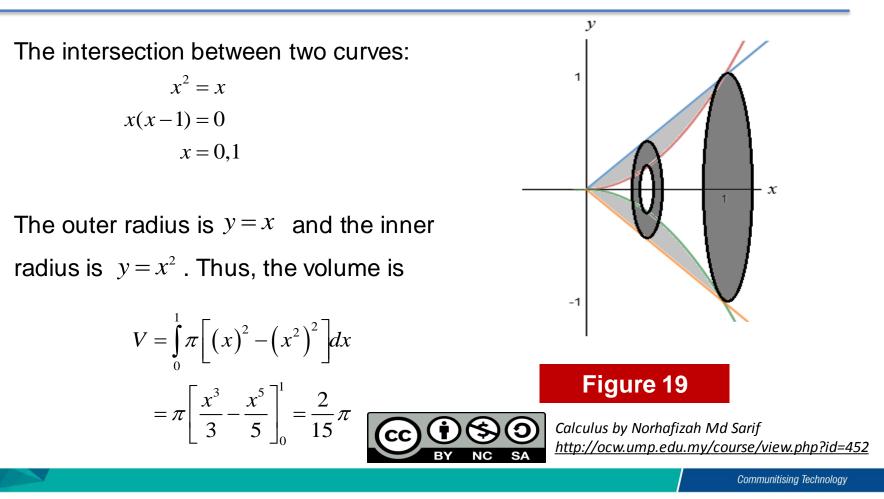
Washers Method

Definition – Volume by Washer perpendicular to y-axis : Suppose R is the region bounded by from x = f(y), x = g(y)y = c and y = d where $f(y) \ge g(y)$ in [c,d]. The volume of the solid revolution that is generated by revolving the region R about the axis is

$$V = \int_{c}^{d} \pi \left(\left[f(y) \right]^{2} - \left[g(y) \right]^{2} \right) dy$$

Find the volume of the solid obtained by rotating the region bounded by

 $y = x^2$ and y = x that lies in the first quadrant about the *x*-axis.



Find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and y = x that lies in the first quadrant about the *y* - axis

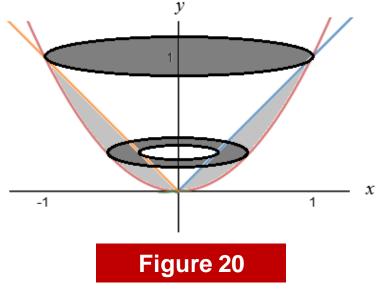
The intersection between two curves:

$$x^{2} = x$$
$$x(x-1) = 0$$
$$x = 0, x = 1$$
$$y = 0, y = 1$$

The outer radius is $x = \sqrt{y}$ and the inner

radius is x = y. Thus, the volume is

$$V = \int_{0}^{1} \pi \left[\left(\sqrt{y} \right)^{2} - \left(y \right)^{2} \right] dx$$
$$= \pi \left[\frac{y^{2}}{2} - \frac{y^{3}}{3} \right]_{0}^{1} = \frac{1}{6} \pi$$



Find the volume of the solid revolution when the region bounded by the curve $y^2 = 8x$ and $y = x^2$ revolves at 360° about the *x*-axis

The intersection between two curves:

$$x^{4} = 8x$$
$$x(x^{3} - 8) = 0$$
$$x = 0, \quad x = 2$$

The outer radius is $y = \sqrt{8x}$ and the inner radius is $y = x^2$. Thus, the volume

is

$$V = \int_{0}^{2} \pi \left[\left(\sqrt{8x} \right)^{2} - \left(x^{2} \right)^{2} \right] dx$$
$$= \pi \left[4x^{2} - \frac{x^{5}}{5} \right]_{0}^{2} = \frac{48}{5}\pi$$

Authors Information

Norhafizah Binti Md Sarif

Email: norhafizah@ump.edu.my Google Scholar: <u>Norhafizah Md Sarif</u> Scopus ID : <u>57190252369</u> UmpIR ID: <u>3479</u> Norazaliza Binti Mohd Jamil

Email: <u>norazaliza@ump.edu.my</u> Google Scholar: <u>Norazaliza Mohd Jamil</u> Scopus ID : <u>42061495500</u>

